2023届黑龙江省安达市四平中学初中数学毕业考试模拟冲刺卷含解析.doc

上传人:lil****205 文档编号:87840872 上传时间:2023-04-18 格式:DOC 页数:18 大小:819.50KB
返回 下载 相关 举报
2023届黑龙江省安达市四平中学初中数学毕业考试模拟冲刺卷含解析.doc_第1页
第1页 / 共18页
2023届黑龙江省安达市四平中学初中数学毕业考试模拟冲刺卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2023届黑龙江省安达市四平中学初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届黑龙江省安达市四平中学初中数学毕业考试模拟冲刺卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温()25262728天 数1123则这组数据的中位数与众数分别是( )A27,28B27.5,28C28,27D26.5,272已知:如图,在正方形ABCD外取一点E,连接AE、

2、BE、DE,过点A作AE的垂线交DE于点P,若AE=AP=1,PB=下列结论:APDAEB;点B到直线AE的距离为;EBED;SAPD+SAPB=1+;S正方形ABCD=4+其中正确结论的序号是()ABCD3如图,在ABC中,cosB,sinC,AC5,则ABC的面积是( )A B12C14D214如图,ACB90,ACBC,ADCE,BECE,若AD3,BE1,则DE( )A1B2C3D45如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )ABCD6在如图的计算程序中,y与x之间的函数关系所对应的图象大

3、致是( )ABCD7若关于,的二元一次方程组的解也是二元一次方程的解,则的值为ABCD8如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知SAEF=4,则下列结论:;SBCE=36;SABE=12;AEFACD,其中一定正确的是()ABCD9如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,ABG46,则FAE的度数是()A26B44C46D7210如图,在平面直角坐标系中,直线y=k1x+2(k10)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若SOBC=1,tanBOC=,则k2的值是()A3BC

4、3D6二、填空题(本大题共6个小题,每小题3分,共18分)11如图,BD是O的直径,CBD30,则A的度数为_12为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()ABCD13如图,在RtABC中,ACB=90,AB的垂直平分线DE交AC于E,交BC的延长线于F,若F=30,DE=1,则BE的长是 14若关于x的方程有两个不相等的实数根,则实数a的取值范围是_15计算的结果为_16如图,在ABC中,AD、BE分别是BC、AC两边中线,则=_三、解答题(共8题,共72分)17(8分)填空并解答:某单位开设了一个窗

5、口办理业务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达该单位上午8:00上班,中午11:30下班(1)问哪一位“新顾客”是第一个不需要排队的?分析:可设原有的6为顾客分别为a1、a2、a3、a4、a5、a6,“新顾客”为c1、c2、c3、c4窗口开始工作记为0时刻a1a2a3a4a5a6c1c2c3c4到达窗口时刻000000161116服务开始时刻024681012141618每人服务时长2222222222服务结束时刻2468101

6、214161820根据上述表格,则第 位,“新顾客”是第一个不需要排队的(2)若其他条件不变,若窗口每a分钟办理一个客户(a为正整数),则当a最小取什么值时,窗口排队现象不可能消失分析:第n个“新顾客”到达窗口时刻为 ,第(n1)个“新顾客”服务结束的时刻为 18(8分)某中学九年级数学兴趣小组想测量建筑物AB的高度他们在C处仰望建筑物顶端A处,测得仰角为,再往建筑物的方向前进6米到达D处,测得仰角为,求建筑物的高度测角器的高度忽略不计,结果精确到米,19(8分)计算:21+|+2cos3020(8分)计算: +()2|1|(+1)0.21(8分)问题提出(1)如图1,在ABC中,A75,C6

7、0,AC6,求ABC的外接圆半径R的值;问题探究(2)如图2,在ABC中,BAC60,C45,AC8,点D为边BC上的动点,连接AD以AD为直径作O交边AB、AC分别于点E、F,接E、F,求EF的最小值;问题解决(3)如图3,在四边形ABCD中,BAD90,BCD30,ABAD,BC+CD12,连接AC,线段AC的长是否存在最小值,若存在,求最小值:若不存在,请说明理由22(10分)如图,在矩形ABCD中,AD4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FHAD,垂足为H,连接AF.(1)求证:FHED;(2)当AE为何值时,AEF的面积最大?23(12分)鄂州某个体商

8、户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个设销售价格每个降低x元(x为偶数),每周销售为y个(1)直接写出销售量y个与降价x元之间的函数关系式; (2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元? (3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24 “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提

9、供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28中位数是27这周最高气温的中位数与众数分别是27,28故选A.2、D【解析】首先利用已知条件根据边角边可以证明APDAEB;由可

10、得BEP=90,故BE不垂直于AE过点B作BFAE延长线于F,由得AEB=135所以EFB=45,所以EFB是等腰Rt,故B到直线AE距离为BF=,故是错误的;利用全等三角形的性质和对顶角相等即可判定说法正确;由APDAEB,可知SAPD+SAPB=SAEB+SAPB,然后利用已知条件计算即可判定;连接BD,根据三角形的面积公式得到SBPD=PDBE=,所以SABD=SAPD+SAPB+SBPD=2+,由此即可判定【详解】由边角边定理易知APDAEB,故正确;由APDAEB得,AEP=APE=45,从而APD=AEB=135,所以BEP=90,过B作BFAE,交AE的延长线于F,则BF的长是点

11、B到直线AE的距离,在AEP中,由勾股定理得PE=,在BEP中,PB= ,PE=,由勾股定理得:BE=,PAE=PEB=EFB=90,AE=AP,AEP=45,BEF=180-45-90=45,EBF=45,EF=BF,在EFB中,由勾股定理得:EF=BF=,故是错误的;因为APDAEB,所以ADP=ABE,而对顶角相等,所以是正确的; 由APDAEB,PD=BE=,可知SAPD+SAPB=SAEB+SAPB=SAEP+SBEP=+,因此是错误的;连接BD,则SBPD=PDBE= ,所以SABD=SAPD+SAPB+SBPD=2+,所以S正方形ABCD=2SABD=4+ 综上可知,正确的有故选

12、D.【点睛】考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题3、A【解析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积【详解】解:过点A作ADBC,ABC中,cosB=,sinC=,AC=5,cosB=,B=45,sinC=,AD=3,CD=4,BD=3,则ABC的面积是:ADBC=3(3+4)=故选:A【点睛】此题主要考查了解直角三角形的知识,作出ADBC,进而得出相关线段的长度是解决问题的关键4、B【解析】根据余角的性质,可得DCA与CBE的关系,根据AAS可得ACD与C

13、BE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案【详解】ADC=BEC=90.BCE+CBE=90,BCE+CAD=90,DCA=CBE,在ACD和CBE中,,ACDCBE(AAS),CE=AD=3,CD=BE=1,DE=CECD=31=2,故答案选:B.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.5、C【解析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。故选:C.【点睛】此题考查函数的图象,解题关键在于观

14、察图形6、A【解析】函数一次函数的图像及性质7、B【解析】将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值【详解】解:,得:,即,将代入得:,即,将,代入得:,解得:故选:【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值8、D【解析】在ABCD中,AO=AC,点E是OA的中点,AE=CE,ADBC,AFECBE,=,AD=BC,AF=AD,;故正确;SAEF=4, =()2=,SBCE=36;故正确; =,=,SABE=12,故正确;BF不平行于CD,AEF与ADC只有一个角相等,AEF与ACD不一定相似,故错误

15、,故选D9、A【解析】先根据正五边形的性质求出EAB的度数,再由平行线的性质即可得出结论【详解】解:图中是正五边形EAB108太阳光线互相平行,ABG46,FAE180ABGEAB1804610826故选A【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出EAB.10、C【解析】如图,作CHy轴于H通过解直角三角形求出点C坐标即可解决问题.【详解】解:如图,作CHy轴于H由题意B(0,2), CH=1,tanBOC= OH=3,C(1,3),把点C(1,3)代入,得到k2=3,故选C【点睛】本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线

16、,构造直角三角形解决问题,属于中考常考题型二、填空题(本大题共6个小题,每小题3分,共18分)11、60【解析】解:BD是O的直径,BCD=90(直径所对的圆周角是直角),CBD=30,D=60(直角三角形的两个锐角互余),A=D=60(同弧所对的圆周角相等);故答案是:6012、A【解析】该班男生有x人,女生有y人根据题意得:,故选D考点:由实际问题抽象出二元一次方程组13、2【解析】ACB=90,FDAB,ACB=FDB=90。F=30,A=F=30(同角的余角相等)。又AB的垂直平分线DE交AC于E,EBA=A=30。RtDBE中,BE=2DE=2。14、a【解析】试题分析:已知关于x的

17、方程2x2+xa=0有两个不相等的实数根,所以=1242(a)=1+8a0,解得a考点:根的判别式.15、【解析】根据同分母分式加减运算法则化简即可【详解】原式,故答案为【点睛】本题考查了分式的加减运算,熟记运算法则是解题的关键16、 【解析】利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;【详解】AE=EC,BD=CD,DEAB,DE=AB,EDCABC,故答案是:【点睛】考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理三、解答题(共8题,共72分)17、(1)5;(2)5n4,na+6a【解析】(1)第5位,“新顾客”到达时间是20分钟,

18、第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,则第n个“新顾客”到达窗口时刻为5n4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,第n1个“新顾客”服务开始的时间为(6+n1)a=(5+n)a,第n1个“新顾客”服务结束的时间为(5+n)a+a=na+6a【详解】(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;故答案为:5;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,第n个“新顾客”到达窗口

19、时刻为5n4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,第n个“新顾客”服务开始的时间为(6+n)a,第n1个“新顾客”服务开始的时间为(6+n1)a=(5+n)a,每a分钟办理一个客户,第n1个“新顾客”服务结束的时间为(5+n)a+a=na+6a,故答案为:5n4,na+6a【点睛】本题考查了列代数式,用代数式表示数的规律,解题关键是要读懂题目的意思,根据题目给出的条件,寻找规律,列出代数式18、14.2米;【解析】RtADB中用AB表示出BD、RtACB中用AB表示出BC,根据CD=BC-BD可得关于AB 的方程,解方程可得【详解】设米C=45在中,米,又米,在中TanAD

20、B= ,Tan60=解得答,建筑物的高度为米【点睛】本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件19、+4【解析】原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值【详解】原式+2+2+4【点睛】本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键20、【解析】先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可求解;【详解】解:原式 【点睛】考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计

21、算法则是解题的关键.21、(1)ABC的外接圆的R为1;(2)EF的最小值为2;(3)存在,AC的最小值为9【解析】(1)如图1中,作ABC的外接圆,连接OA,OC证明AOC=90即可解决问题;(2)如图2中,作AHBC于H当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短;(3)如图3中,将ADC绕点A顺时针旋转90得到ABE,连接EC,作EHCB交CB的延长线于H,设BE=CD=x证明EC=AC,构建二次函数求出EC的最小值即可解决问题【详解】解:(1)如图1中,作ABC的外接圆,连接OA,OCB180BACACB180751045

22、,又AOC2B,AOC90,AC1,OAOC1,ABC的外接圆的R为1(2)如图2中,作AHBC于HAC8,C45,AHACsin4588,BAC10,当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短,如图21中,当ADBC时,作OHEF于H,连接OE,OFEOF2BAC20,OEOF,OHEF,EHHF,OEFOFE30,EHOFcos3041,EF2EH2,EF的最小值为2(3)如图3中,将ADC绕点A顺时针旋转90得到ABE,连接EC,作EHCB交CB的延长线于H,设BECDxAEAC,CAE90,ECAC,AECACE45,E

23、C的值最小时,AC的值最小,BCDACB+ACDACB+AEB30,BEC+BCE10,EBC20,EBH10,BEH30,BHx,EHx,CD+BC2,CDx,BC2xEC2EH2+CH2(x)2+x22x+432,a10,当x1时,EC的长最小,此时EC18,ACEC9,AC的最小值为9【点睛】本题属于圆综合题,考查了圆周角定理,勾股定理,解直角三角形,二次函数的性质等知识,解题的关键是学会添加常用辅助线,学会构建二次函数解决最值问题,属于中考压轴题22、(1)证明见解析;(2)AE2时,AEF的面积最大【解析】(1)根据正方形的性质,可得EF=CE,再根据CEF=90,进而可得FEH=D

24、CE,结合已知条件FHE=D=90,利用“AAS”即可证明FEHECD,由全等三角形的性质可得FH=ED;(2)设AE=a,用含a的函数表示AEF的面积,再利用函数的最值求面积最大值即可【详解】(1)证明:四边形CEFG是正方形,CEEF.FECFEHCED90,DCECED90,FEHDCE.在FEH和ECD中,,FEHECD,FHED.(2)解:设AEa,则EDFH4a,SAEFAEFHa(4a) (a2)22,当AE2时,AEF的面积最大【点睛】本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键23、(1)y=10x

25、+160;(2)5280元;(3)10000元.【解析】试题分析:(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;(2)根据题意结合每周获得的利润W=销量每个的利润,进而利用二次函数增减性求出答案;(3)根据题意,由利润不低于5200元列出不等式,进一步得到销售量的取值范围,从而求出答案试题解析:(1)依题意有:y=10x+160;(2)依题意有:W=(8050x)(10x+160)=10(x7)2+5290,-100且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润

26、最大,最大利润是5280元;(3)依题意有:10(x7)2+52905200,解得4x10,则200y260,20050=10000(元)答:他至少要准备10000元进货成本点睛:此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量每个的利润=W得出函数关系式是解题关键24、 (1) 60,90;(2)见解析;(3) 300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案【详解】解:(1)了解很少的有30人,占50%,接受问卷调查的学生共有:3050%=60(人);扇形统计图中“基本了解”部分所对应扇形的圆心角为:360=90;故答案为60,90;(2)60153010=5;补全条形统计图得:(3)根据题意得:900=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁