《黑龙江省哈尔滨市69中学2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《黑龙江省哈尔滨市69中学2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1将某不等式组的解集表示在数轴上,下列表示正确的是( )
2、ABCD2某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A6折B7折C8折D9折3如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是ABCD4cos30的值为( )A1BCD5如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC/BD/y轴,已知点A,B的横坐标分别为1,2,OAC与ABD的面积之和为,则k的值为( )A4B3C2D6已知二次函数的与的不符对应值如下表:且方程的两根分别为,下面说法错误的是( )A,BC当时,D当时,有最小值7下列事件中为必然事件的是( )A打开
3、电视机,正在播放茂名新闻B早晨的太阳从东方升起C随机掷一枚硬币,落地后正面朝上D下雨后,天空出现彩虹8如图,正方形ABCD的对角线AC与BD相交于点O,ACB的角平分线分别交AB,BD于M,N两点若AM2,则线段ON的长为( )ABC1D9一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则NOF的度数为( )A50B60C70D8010如图,ABC是ABC以点O为位似中心经过位似变换得到的,若ABC的面积与ABC的面积比是4:9,则OB:OB为()A2:3
4、B3:2C4:5D4:9二、填空题(本大题共6个小题,每小题3分,共18分)11如图,已知l1l2l3,相邻两条平行直线间的距离相等若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tan的值是_12图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙)图乙种,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为_cm13在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任
5、务,求原计划每天修路的长度若设原计划每天修路xm,则根据题意可得方程 14如图,CE是ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E连接AC,BE,DO,DO与AC交于点F,则下列结论:四边形ACBE是菱形;ACDBAE;AF:BE2:1;S四边形AFOE:SCOD2:1其中正确的结论有_(填写所有正确结论的序号)15二次函数yax2+bx+c的图象如图所示,以下结论:abc0;4acb2;2a+b0;其顶点坐标为(,2);当x时,y随x的增大而减小;a+b+c0中,正确的有_(只填序号)16已知关于x的一元二次方程(k5)x22x+2=0有实根,则k的取值范围为_三、解
6、答题(共8题,共72分)17(8分) 先化简,再求值: ,其中x是满足不等式(x1)的非负整数解18(8分)解方程(1)x11x10(1)(x+1)14(x1)119(8分)解不等式组并写出它的所有整数解20(8分)如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CEAB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长小何根据学习函数的经验,将此问题转化为函数问题解决小华假设AE的长度为xcm,线段DE的长度为ycm(当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究下面是小何的探究过程,请补充完整:(说
7、明:相关数据保留一位小数)(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm012345678y/cm01.62.53.34.04.7 5.85.7当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:(2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为 cm21(8分)在传箴言活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行统计,并绘制成了如图所示的两幅统计图(1)将条形统计图补充完整;(2)该班团员在这一个月内所
8、发箴言的平均条数是_;(3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率22(10分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x70时,y80;x60时,y1在销售过程中,每天还要支付其他费用350元求y与x的函数关系式,并写出自变量x的取值范围;求该公司销售该原料日获利w(元)与销售单
9、价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?23(12分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.求一次函数的表达式;若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.24某船的载重为260吨,容积为1000m1现有甲、乙两种货物要运,其中甲种货物每吨体积为8m1,乙种货物每吨体积为2m1,若要充分利用这艘船的载重与容积,求甲、乙两种货物应各装的吨数(设装运货物时无任何空隙)参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“”,“”
10、表示,空心圆点不包括该点用“”表示,大于向右小于向左点睛:不等式组的解集为1x,向右画; ,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“”,“”要用实心圆点表示;“”要用空心圆点表示.2、B【解析】设可打x折,则有1200-8008005%,解得x1即最多打1折故选B【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解3、B【解析】根据常见几何体的展开图即可得【详解】
11、由展开图可知第一个图形是正方体的展开图,第2个图形是圆柱体的展开图,第3个图形是三棱柱的展开图,第4个图形是四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.4、D【解析】cos30=故选D5、B【解析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC/BD/ y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出SOAC,SABD的面积,再根据OAC与ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,A(1,1),把x=2代入得:y=,B(2, ),AC/BD
12、/ y轴,C(1,K),D(2,)AC=k-1,BD=-,SOAC=(k-1)1,SABD= (-)1,又OAC与ABD的面积之和为,(k-1)1 (-)1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.6、C【解析】分别结合图表中数据得出二次函数对称轴以及图像与x轴交点范围和自变量x与y的对应情况,进而得出答案.【详解】A、利用图表中x0,1时对应y的值相等,x1,2时对应y的值相等,x2,5时对应y的值相等,x2,y5,故此选项正确;B、方程ax2bcc0的两根分别是x1、x2(x
13、1x2),且x1时y1;x2时,y1,1x22,故此选项正确;C、由题意可得出二次函数图像向上,当x1xx2时,y0,故此选项错误;D、利用图表中x0,1时对应y的值相等,当x时,y有最小值,故此选项正确,不合题意.所以选C.【点睛】此题主要考查了抛物线与x轴的交点以及利用图像上点的坐标得出函数的性质,利用数形结合得出是解题关键.7、B【解析】分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B、早晨的太阳从东方升起,是必然事件,故本选项正确;C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,
14、故本选项错误;D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误故选B8、C【解析】作MHAC于H,如图,根据正方形的性质得MAH=45,则AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明CONCHM,再利用相似比可计算出ON的长【详解】试题分析:作MHAC于H,如图,四边形ABCD为正方形,MAH=45,AMH为等腰直角三角形,AH=MH=AM=2=,CM平分ACB,BM=MH=,AB=2+,AC=AB=(2+)=2+2,OC=AC=+
15、1,CH=ACAH=2+2=2+,BDAC,ONMH,CONCHM,即,ON=1故选C【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形也考查了角平分线的性质和正方形的性质9、C【解析】解:OM=60海里,ON=80海里,MN=100海里,OM2+ON2=MN2,MON=90,EOM=20,NOF=1802090=70故选C【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键10、A【解析】根据位似的性质得ABCABC,再根
16、据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,ABAB,ACAC,ABCABC,ABC与ABC的面积的比4:9,ABC与ABC的相似比为2:3, ,故选A【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】如图,分别过点A,B作AE,BF,BD,垂足分别为E,F,D.ABC为等腰直角三角形,AC=BC,ACB=90,ACE+BCF=90.AE,BFCAE+ACE=90,CBF+BCF=90,CAE=BCF,ACE
17、=CBF.CAE=BCF,AC=BC,ACE=CBF,ACECBF,CE=BF,AE=CF.设平行线间距离为d=l,则CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3,tan=tanBAD=.点睛:分别过点A,B作AE,BF,BD,垂足分别为E,F,D,可根据ASA证明ACECBF,设平行线间距离为d=1,进而求出AD、BD的值;本题考查了全等三角形的判定和锐角三角函数,解题的关键是合理添加辅助线构造全等三角形;12、【解析】试题分析:根据,EF=4可得:AB=和BC的长度,根据阴影部分的面积为54可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为,则菱形的周长为
18、:4=.考点:菱形的性质.13、.【解析】试题解析:原计划用的时间为: 实际用的时间为: 可列方程为: 故答案为14、【解析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.【详解】四边形ABCD是平行四边形,ABCD,AB=CD,EC垂直平分AB,OA=OB=AB=DC,CDCE,OADC,=,AE=AD,OE=OC,OA=OB,OE=OC,四边形ACBE是平行四边形,ABEC,四边形ACBE是菱形,故正确,DCE=90,DA=AE,AC=AD=AE,ACD=ADC=BAE,故正确,OACD,故错误,设AOF的面积为a,则OFC的面积为2a,CDF的面积为4
19、a,AOC的面积=AOE的面积=1a,四边形AFOE的面积为4a,ODC的面积为6aS四边形AFOE:SCOD=2:1故正确.故答案是:【点睛】此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.15、【解析】根据图象可判断,由x=1时,y0,可判断【详解】由图象可得,a0,c0,b0,=b24ac0,对称轴为x=abc0,4acb2,当时,y随x的增大而减小故正确, 2a+b0,故正确,由图象可得顶点纵坐标小于2,则错误,当x=1时,y=a+b+c0,故错误故答案为:【点睛】本题考查的是二次函数图象与
20、系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定16、【解析】若一元二次方程有实根,则根的判别式=b2-4ac0,且k-10,建立关于k的不等式组,求出k的取值范围【详解】解:方程有两个实数根,=b2-4ac=(-2)2-42(k-1)=44-8k0,且k-10,解得:k且k1,故答案为k且k1【点睛】此题考查根的判别式问题,总结:一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根三、解答题(共8题,共72分)17、- 【解析】【分析】先根据分式的运
21、算法则进行化简,然后再求出不等式的非负整数解,最后把符合条件的x的值代入化简后的结果进行计算即可.【详解】原式=,=,=,(x1),x11,x0,非负整数解为0,x=0,当x=0时,原式=-.【点睛】本题考查了分式的化简求值,解题的关键是熟练掌握分式的运算法则.18、(1)x1=1+,x1=1;(1)x1=3,x1=【解析】(1)配方法解;(1)因式分解法解.【详解】(1)x11x1=2,x11x+1=1+1,(x1)1=3,x1= ,x=1,x1=1,x1=1,(1)(x+1)1=4(x1)1(x+1)14(x1)1=2(x+1)11(x1)1=2(x+1)1(1x1)1=2(x+11x+1
22、)(x+1+1x1)=2(x+3)(3x1)=2x1=3,x1=【点睛】考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程19、不等式组的整数解有1、0、1【解析】先解不等式组,求得不等式组的解集,再确定不等式组的整数解即可.【详解】,解不等式可得,x-2;解不等式可得,x1;不等式组的解集为:2x1,不等式组的整数解有1、0、1【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础, 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则求不等式组的解集是解答本题的关键20、(1)5.3(2)见解析(3)2.5或6.9【解析】(1)(2)按照
23、题意取点、画图、测量即可(3)中需要将DE=2OE转换为y与x的函数关系,注意DE为非负数,函数为分段函数【详解】(1)根据题意取点、画图、测量的x=6时,y=5.3故答案为5.3(2)根据数据表格画图象得(3)当DE=2OE时,问题可以转化为折线y= 与(2)中图象的交点经测量得x=2.5或6.9时DE=2OE故答案为2.5或6.9【点睛】动点问题的函数图象探究题,考查了函数图象的画法,应用了数形结合思想和转化的数学思想21、(1)作图见解析;(2)3;(3)【解析】(1)根据发了3条箴言的人数与所占的百分比列式计算即可求出该班全体团员的总人数为12,再求出发了4条箴言的人数,然后补全统计图
24、即可;(2)利用该班团员在这一个月内所发箴言的总条数除以总人数即可求得结果;(3)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可【详解】解:(1)该班团员人数为:325%=12(人),发了4条赠言的人数为:122231=4(人),将条形统计图补充完整如下: (2)该班团员所发赠言的平均条数为:(21+22+33+44+15)12=3,故答案为:3;(3)发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,发了3条箴言的同学中有一位女同学,发了4条箴言的同学中有一位男同学,方法一:列表得:共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一
25、位女同学的情况有7种,所选两位同学中恰好是一位男同学和一位女同学的概率为:;方法二:画树状图如下:共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,所选两位同学中恰好是一位男同学和一位女同学的概率为:;【点睛】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识注意平均条数=总条数总人数;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率22、 (1) y2x+220(40x70);(2) w2x2+300x9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元【解析】(1)根据
26、y与x成一次函数解析式,设为ykx+b(k0),把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润单价销售量,列出w关于x的二次函数解析式即可;(3)利用二次函数的性质求出w的最大值,以及此时x的值即可【详解】(1)设ykx+b(k0),根据题意得,解得:k2,b220,y2x+220(40x70);(2)w(x40)(2x+220)3502x2+300x91502(x75)2+21;(3)w2(x75)2+21,40x70,x70时,w有最大值为w225+212050元,当销售单价为70元时,该公司日获利最大,为2050元【点睛】此题考查了二次函
27、数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键23、(1);(2)1或9.【解析】试题分析:(1)把A(2,b)的坐标分别代入一次函数和反比例函数表达式,求得k、b的值,即可得一次函数的解析式;(2)直线AB向下平移m(m0)个单位长度后,直线AB对应的函数表达式为yx5m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令=0,即可求得m的值.试题解析: (1)根据题意,把A(2,b)的坐标分别代入一次函数和反比例函数表达式,得,解得,所以一次函数的表达式为yx5.(2)将直线AB向下平移m(m0)个单位长度后,直线AB对应的函数表达式为yx5m.由得, x2(5m)x80.(5m)2480,解得m1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解24、这艘船装甲货物80吨,装乙货物180吨【解析】根据题意先列二元一次方程,再解方程即可.【详解】解:设这艘船装甲货物x吨,装乙货物y吨,根据题意,得解得答:这艘船装甲货物80吨,装乙货物180吨【点睛】此题重点考查学生对二元一次方程的应用能力,熟练掌握二元一次方程的解法是解题的关键.