2023届陕西省延安市名校中考押题数学预测卷含解析.doc

上传人:lil****205 文档编号:87840738 上传时间:2023-04-18 格式:DOC 页数:18 大小:833.50KB
返回 下载 相关 举报
2023届陕西省延安市名校中考押题数学预测卷含解析.doc_第1页
第1页 / 共18页
2023届陕西省延安市名校中考押题数学预测卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2023届陕西省延安市名校中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届陕西省延安市名校中考押题数学预测卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1二次函数的最大值为( )A3B4C5D62如图,在55的方格纸中将图中的图形N平移到如图所示的位置,那么下列平移正确的是( )A先向下移动1格,再向左移动1格B先向下移动1格,再向左移动2格C先向下移动2格,再向左移动1格D先向下移动2格,再向左移动2格3下列说法正确的是()A某工厂质检员检测某批灯

2、泡的使用寿命采用普查法B已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6C12名同学中有两人的出生月份相同是必然事件D在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是4上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y与时间t之间的函数关系的大致图象是()ABCD5如图,在ABC中,AB=AC=3,BC=

3、4,AE平分BAC交BC于点E,点D为AB的中点,连接DE,则BDE的周长是()A3B4C5D66若分式有意义,则a的取值范围为( )Aa4Ba4Ca4Da47如果,那么( )AB CD8大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉( )A6.5千克 B7.5千克 C8.5千克 D9.5千克9下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )ABCD10某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别

4、是( )人数3421分数80859095A85和82.5B85.5和85C85和85D85.5和80二、填空题(本大题共6个小题,每小题3分,共18分)11请写出一个比2大且比4小的无理数:_.12每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_13如图,反比例函数y(x0)的图象经过点A(2,2),过点A作ABy轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B在此反比例函数的图象上,则t的值是()A1+B4+C4D-1+14分解因式:3a212=_15如图,CD是RtABC斜边AB上的高,将BCD沿

5、CD折叠,B点恰好落在AB的中点E处,则A等于_度16已知扇形AOB的半径OA=4,圆心角为90,则扇形AOB的面积为_.三、解答题(共8题,共72分)17(8分)如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.(1)求抛物线的解析式;(2)点P为直线AC上方抛物线上一动点;连接PO,交AC于点E,求的最大值;过点P作PFAC,垂足为点F,连接PC,是否存在点P,使PFC中的一个角等于CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.18(8分)已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3)(

6、1)求抛物线的解析式;(2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由 19(8分)杨辉算法中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?20(8分)如图,将矩形ABCD绕点A顺时针旋转,得到矩形ABCD,点 C的对应点 C恰好落在CB的延长线上,边AB交边 CD于点E(1)求证:BCBC;(2)若 AB2,BC1,求A

7、E的长21(8分)如图,在ABC中,ABAC,点D在边AC上(1)作ADE,使ADEACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)(2)若BC5,点D是AC的中点,求DE的长22(10分)如图,点在的直径的延长线上,点在上,且AC=CD,ACD=120.求证:是的切线;若的半径为2,求图中阴影部分的面积.23(12分)2018年4月12日上午,新中国历史上最大规模的海上阅兵在南海海域隆重举行,中国人解放军海军多艘战舰、多架战机和1万余名官兵参加了海上阅兵式,已知战舰和战机总数是124,战数的3倍比战机数的2倍少8.问有多少艘战舰和多少架战机参加了此次阅兵.24中央电视台的“朗读

8、者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率50.26180.36714880.16合计1 (1)统计表中的_,_,_;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:先利用配方法得到y=(x1)2+1,然后根据二次函数的

9、最值问题求解解:y=(x1)2+1,a=10,当x=1时,y有最大值,最大值为1故选C考点:二次函数的最值2、C【解析】根据题意,结合图形,由平移的概念求解.【详解】由方格可知,在55方格纸中将图中的图形N平移后的位置如图所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C【点睛】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.3、B【解析】分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案【详解】A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B.

10、根据平均数是4求得a的值为2,则方差为 (14)2+(24)2+(44)2+(44)2+(94)2=7.6,故本选项正确;C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.4、B【解析】分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不

11、变,速快跑距离变化快,可得答案详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选B点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键5、C【解析】根据等腰三角形的性质可得BE=BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案【详解】解:在ABC中,AB=AC=3,AE平分BAC,BE=CE=BC=2,又D是AB中点,BD=AB=,DE是ABC的中位线,DE=AC=,BDE的周长为BD+DE+BE=+2=5,故选C【点睛】本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键6、A【

12、解析】分式有意义时,分母a-40【详解】依题意得:a40,解得a4.故选:A【点睛】此题考查分式有意义的条件,难度不大7、B【解析】试题分析:根据二次根式的性质,由此可知2-a0,解得a2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质可求解.8、C【解析】【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可【详解】设每个小箱子装洗衣粉x千克,由题意得:4x+2=36,解得:x=8.5,即每个小箱子装洗衣粉8.5千克,故选C【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.9、B【解析】由俯视图所标该位置上小立方块的个数

13、可知,左侧一列有2层,右侧一列有1层.【详解】根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1故选B【点睛】此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.10、B【解析】根据众数及平均数的定义,即可得出答案.【详解】解:这组数据中85出现的次数最多,故众数是85;平均数= (803+854+902+951)=85.5.故选:B.【点睛】本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、(或)【解析】利用完全平方数和算术平方

14、根对无理数的大小进行估算,然后找出无理数即可【详解】设无理数为,所以x的取值在416之间都可,故可填【点睛】本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键12、2【解析】设第n层有an个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“an2n2”,再代入n2029即可求出结论【详解】设第n层有an个三角形(n为正整数),a22,a22+23,a322+25,a423+27,an2(n2)+22n2当n2029时,a20292202922故答案为2【点睛】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“an2n2”是解题的关键13、A【

15、解析】根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断OAB为等腰直角三角形,所以AOB=45,再利用PQOA可得到OPQ=45,然后轴对称的性质得PB=PB,BBPQ,所以BPQ=BPQ=45,于是得到BPy轴,则点B的坐标可表示为(-,t),于是利用PB=PB得t-2=|-|=,然后解方程可得到满足条件的t的值【详解】如图,点A坐标为(-2,2),k=-22=-4,反比例函数解析式为y=-,OB=AB=2,OAB为等腰直角三角形,AOB=45,PQOA,OPQ=45,点B和点B关于直线l对称,PB=PB,BBPQ,

16、BPQ=OPQ=45,BPB=90,BPy轴,点B的坐标为(- ,t),PB=PB,t-2=|-|=,整理得t2-2t-4=0,解得t1= ,t2=1- (不符合题意,舍去),t的值为故选A【点睛】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程14、3(a+2)(a2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式因此,3a212=3(a24)=3(a+2)(a2)15、30【解析】试题分析:

17、根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则A=30.考点:折叠图形的性质16、4【解析】根据扇形的面积公式可得:扇形AOB的面积为,故答案为4.三、解答题(共8题,共72分)17、(1);(2)有最大值1;(2,3)或(,)【解析】(1)根据自变量与函数值的对应关系,可得A,C点坐标,根据代定系数法,可得函数解析式;(2)根据相似三角形的判定与性质,可得,根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;根据勾股定理的逆定理得到ABC是以ACB为直角的直角三角形,取AB

18、的中点D,求得D(,0),得到DA=DC=DB=,过P作x轴的平行线交y轴于R,交AC于G,情况一:如图,PCF=2BAC=DGC+CDG,情况二,FPC=2BAC,解直角三角形即可得到结论【详解】(1)当x=0时,y=2,即C(0,2),当y=0时,x=4,即A(4,0),将A,C点坐标代入函数解析式,得,解得,抛物线的解析是为;(2)过点P向x轴做垂线,交直线AC于点M,交x轴于点N,直线PNy轴,PEMOEC,把x=0代入y=-x+2,得y=2,即OC=2,设点P(x,-x2+x+2),则点M(x,-x+2),PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,=,

19、0x4,当x=2时,=有最大值1A(4,0),B(-1,0),C(0,2),AC=2,BC=,AB=5,AC2+BC2=AB2,ABC是以ACB为直角的直角三角形,取AB的中点D,D(,0),DA=DC=DB=,CDO=2BAC,tanCDO=tan(2BAC)=,过P作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,PCF=2BAC=PGC+CPG,CPG=BAC,tanCPG=tanBAC=,即,令P(a,-a2+a+2),PR=a,RC=-a2+a,a1=0(舍去),a2=2,xP=2,-a2+a+2=3,P(2,3)情况二,FPC=2BAC,tanFPC=,设FC=4k,PF

20、=3k,PC=5k,tanPGC=,FG=6k,CG=2k,PG=3k,RC=k,RG=k,PR=3k-k=k,a1=0(舍去),a2=,xP=,-a2+a+2=,即P(,),综上所述:P点坐标是(2,3)或(,)【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏18、(1);(2);(3)P1(3,-3),P2(,3),P3(,3)【解析】(1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;(2)根据的坐标,易求得直线的解析式由于都是定值

21、,则 的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则 可得到当面积有最大值时,四边形的面积最大值;(3)本题应分情况讨论:过作轴的平行线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标【详解】解:(1)把代入,可以求得 (2)过点作轴分别交线段和轴于点,在中,令,得 设直线的解析式为 可求得直线的解析式为: S四边形ABCD 设 当时,有最大值 此时四边形ABCD面积有最大值 (3)如图所示,如图:过

22、点C作CP1x轴交抛物线于点P1,过点P1作P1E1BC交x轴于点E1,此时四边形BP1CE1为平行四边形,C(0,-3)设P1(x,-3)x2-x-3=-3,解得x1=0,x2=3,P1(3,-3);平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,C(0,-3)设P(x,3),x2-x-3=3,x2-3x-8=0解得x=或x=,此时存在点P2(,3)和P3(,3),综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3)【点睛】此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识

23、,综合性强,难度较大19、12【解析】设矩形的长为x步,则宽为(60x)步,根据题意列出方程,求出方程的解即可得到结果【详解】解:设矩形的长为x步,则宽为(60x)步,依题意得:x(60x)864,整理得:x260x+8640,解得:x36或x24(不合题意,舍去),60x603624(步),362412(步),则该矩形的长比宽多12步【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键20、(1)证明见解析;(2)AE=【解析】(1)连结 AC、AC,根据矩形的性质得到ABC90,即 ABCC, 根据旋转的性质即可得到结论;(2)根据矩形的性质得到 ADBC,DABC90,

24、根据旋转的性质得到 BCAD,ADAD,证得 BCAD,根据全等三角形的性质得到 BEDE,设 AEx,则 DE2x,根据勾股定理列方程即可得到结论【详解】解:(1)连结 AC、AC,四边形 ABCD为矩形,ABC90,即 ABCC,将矩形 ABCD 绕点A顺时针旋转,得到矩形 ABCD,ACAC,BCBC;(2)四边形 ABCD 为矩形,ADBC,DABC90,BCBC,BCAD,将矩形 ABCD 绕点 A 顺时针旋转,得到矩形 ABCD,ADAD,BCAD,在ADE 与CBE中ADECBE,BEDE,设 AEx,则 DE2x,在 RtADE 中,D90, 由勾定理,得 x2(2x)21,解

25、得 x,AE 【点睛】本题考查了旋转的性质,三角形全等的判定和性质,勾股定理的应用等, 熟练掌握性质定理是解题的关键21、(1)作图见解析;(2)【解析】(1)根据作一个角等于已知角的步骤解答即可;(2)由作法可得DEBC,又因为D是AC的中点,可证DE为ABC的中位线,从而运用三角形中位线的性质求解【详解】解:(1)如图,ADE为所作;(2)ADE=ACB,DEBC,点D是AC的中点,DE为ABC的中位线,DE=BC=22、(1)见解析(2)图中阴影部分的面积为.【解析】(1)连接OC只需证明OCD90根据等腰三角形的性质即可证明;(2)先根据直角三角形中30的锐角所对的直角边是斜边的一半求

26、出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积【详解】(1)证明:连接OCACCD,ACD120,AD30OAOC,2A30OCDACD290,即OCCD,CD是O的切线;(2)解:12A60S扇形BOC在RtOCD中,D30,OD2OC4,CDSRtOCDOCCD2图中阴影部分的面积为:23、有48艘战舰和76架战机参加了此次阅兵.【解析】设有x艘战舰,y架战机参加了此次阅兵,根据题意列出方程组解答即可.【详解】设有x艘战舰,y架战机参加了此次阅兵,根据题意,得,解这个方程组,得 ,答:有48艘战舰和76架战机参加了此次阅兵.【点睛】此题考查

27、二元一次方程组的应用,关键是根据题意列出等量关系进行解答.24、(1)10,0.28,50(2)图形见解析(3)6.4(4)528【解析】分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;详解:(1)由题意c=50,a=500.2=10,b=0.28,c=50;故答案为10,0.28,50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(510+618+714+88)50=32050=6.4(本)(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)1200=528(人)点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁