《2023届江苏省苏州昆山、太仓市中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省苏州昆山、太仓市中考猜题数学试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图所示的几何体的主视图是( )ABCD2下列运算正确的是( )ABCD3下列运算正确的是()ABCD4如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )A B C D5下列方程中是一元二次方程的是()ABCD6如图,已知直
2、线AD是O的切线,点A为切点,OD交O于点B,点C在O上,且ODA=36,则ACB的度数为()A54 B36 C30 D277把不等式组的解集表示在数轴上,正确的是()ABCD82022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为( )A1210B1.210C1.210D0.12109一次函数的图像不经过的象限是:( )A第一象限B第二象限C第三象限D第四象限10函数的图像位于( )A第一象限B第二象限C第三象限D第四象限二、填空题(本大题共6个小题
3、,每小题3分,共18分)11在ABC中,AB=AC,把ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N如果CAN是等腰三角形,则B的度数为_12分解因式:4a3bab_13关于的一元二次方程有两个相等的实数根,则_14圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_15如图,点、在直线上,点,在直线上,以它们为顶点依次构造第一个正方形,第二个正方形,若的横坐标是1,则的坐标是_,第n个正方形的面积是_16等腰三角形一边长为8,另一边长为5,则此三角形的周长为_三、解答题(共8题,共72分)17(8分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择
4、一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球乒乓球36排球足球12请根据以上图表信息解答下列问题:频数分布表中的 , ;在扇形统计图中,“排球”所在的扇形的圆心角为 度;全校有多少名学生选择参加乒乓球运动?18(8分)如图,一座钢结构桥梁的框架是ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且ADBC(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE2AE,且EFBC,垂足为点F,求支架DE的长19(8分)已知:如图,AB=AE,1=2,B=E求证:BC=ED20
5、(8分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示求小张骑自行车的速度;求小张停留后再出发时y与x之间的函数表达式;求小张与小李相遇时x的值21(8分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60,“自行车”对应的扇形圆心角为120,已知七年级乘公交车上学的人数为50人(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多
6、少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?22(10分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到ACD,再将ACD沿DB方向平移到ACD的位置,若平移开始后点D未到达点B时,AC交CD于E,DC交CB于点F,连接EF,当四边形EDDF为菱形时,试探究ADE的形状,并判断ADE与EFC是否全等?请说明理由23(12分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等(1)求每台电冰箱与空调的进价分别是多少
7、?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?(3)实际进货时,厂家对电冰箱出厂价下调K(0K150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案24如图,在ABC中,点D,E分别在边AB,AC上,且BE平分ABC,ABE=ACD,BE,CD交于点F(1)求证:;(2)请探究线段DE,CE的数量关系,并说明理由;(3)若CDAB,AD=2,BD=3,求线段EF的长参考答案一、选择
8、题(共10小题,每小题3分,共30分)1、A【解析】找到从正面看所得到的图形即可【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图2、D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.3、D【解析】由去括号法则:如果
9、括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(ab)2=a22ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可【详解】解:A、a-(b+c)=a-b-ca-b+c,故原题计算错误;B、(x+1)2=x2+2x+1x+1,故原题计算错误;C、(-a)3=,故原题计算错误;D、2a23a3=6a5,故原题计算正确;故选:D【点睛】本题考查了整式的乘法,解题的关键是掌握有关计算法则4、A【解析】由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.故选A.点
10、睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.5、C【解析】找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可【详解】解:A、当a=0时,不是一元二次方程,故本选项错误;B、是分式方程,故本选项错误;C、化简得:是一元二次方程,故本选项正确;D、是二元二次方程,故本选项错误;故选:C【点睛】本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键6、D【解析】解:AD为圆O的切线,ADOA,即OAD=90,ODA=36,AOD=54,A
11、OD与ACB都对,ACB=AOD=27故选D7、A【解析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可【详解】 由,得x2,由,得x1,所以不等式组的解集是:2x1不等式组的解集在数轴上表示为:故选A【点睛】本题考查的是解一元一次不等式组熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键8、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.【详解】数据12000用科学
12、记数法表示为1.2104,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值.9、C【解析】试题分析:根据一次函数y=kx+b(k0,k、b为常数)的图像与性质可知:当k0,b0时,图像过一二三象限;当k0,b0时,图像过一三四象限;当k0,b0时,图像过一二四象限;当k0,b0,图像过二三四象限.这个一次函数的k=0与b=10,因此不经过第三象限.答案为C考点:一次函数的图像10、D【解析】根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案【
13、详解】解:函数的图象位于第四象限故选:D【点睛】此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键二、填空题(本大题共6个小题,每小题3分,共18分)11、或【解析】MN是AB的中垂线,则ABN是等腰三角形,且NA=NB,即可得到B=BAN=C然后对ANC中的边进行讨论,然后在ABC中,利用三角形内角和定理即可求得B的度数解:把ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N,MN是AB的中垂线NB=NAB=BAN,AB=ACB=C设B=x,则C=BAN=x1)当AN=NC时,CAN=C=x则在ABC中,根据三角形内角和定理可得:4x=180,解得:x=45
14、则B=45;2)当AN=AC时,ANC=C=x,而ANC=B+BAN,故此时不成立;3)当CA=CN时,NAC=ANC=在ABC中,根据三角形内角和定理得到:x+x+x+=180,解得:x=36故B的度数为 45或3612、ab(2a+1)(2a-1)【解析】先提取公因式再用公式法进行因式分解即可.【详解】4a3b- ab= ab(4a2-1)=ab(2a+1)(2a-1)【点睛】此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.13、-1.【解析】根据根的判别式计算即可.【详解】解:依题意得:关于的一元二次方程有两个相等的实数根,= =4-41(-k)=4+4k=0解得,k=-1.
15、故答案为:-1.【点睛】本题考查了一元二次方程根的判别式,当=0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当=0时,方程无实数根.14、15p【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解圆锥的侧面积=235=15故答案为15考点:圆锥的计算15、 (4,2), 【解析】由的横坐标是1,可得,利用两个函数解析式求出点、的坐标,得出的长度以及第1个正方形的面积,求出的坐标;然后再求出的坐标,得出第2个正方形的面积,求出的坐标;再求出、的坐标,得出第3个正方形的面积;从而得出规律即可得到第n个正
16、方形的面积【详解】解:点、在直线上,的横坐标是1,点,在直线上,第1个正方形的面积为:;,第2个正方形的面积为:;,第3个正方形的面积为:;,第n个正方形的面积为:故答案为,【点睛】本题考查了一次函数图象上点的坐标特征,正方形的性质以及规律型中图形的变化规律,解题的关键是找出规律本题难度适中,解决该题型题目时,根据给定的条件求出第1、2、3个正方形的边长,根据数据的变化找出变化规律是关键16、18或21【解析】当腰为8时,周长为8+8+5=21;当腰为5时,周长为5+5+8=18.故此三角形的周长为18或21.三、解答题(共8题,共72分)17、 (1)24,1;(2) 54;(3)360.【
17、解析】(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解【详解】(1)抽取的人数是3630%120(人),则a12020%24,b120302436121故答案是:24,1;(2)“排球”所在的扇形的圆心角为36054,故答案是:54;(3)全校总人数是12010%1200(人),则选择参加乒乓球运动的人数是120030%360(人)18、(1)sinB;(2)DE1【解析】(1)在RtABD中,利用勾股定理求
18、出AB,再根据sinB=计算即可;(2)由EFAD,BE=2AE,可得,求出EF、DF即可利用勾股定理解决问题;【详解】(1)在RtABD中,BD=DC=9,AD=6,AB=3,sinB=(2)EFAD,BE=2AE,EF=4,BF=6,DF=3,在RtDEF中,DE=1考点:1.解直角三角形的应用;2.平行线分线段成比例定理.19、证明见解析.【解析】由1=2可得CAB =DAE,再根据ASA证明ABCAED,即可得出答案.【详解】1=2,1+BAD=2+BAD,CAB=DAE,在ABC与AED中,B=E,AB=AE,CAB=DAE,ABCAED,BC=ED.20、(1)300米/分;(2)
19、y=300x+3000;(3)分【解析】(1)由图象看出所需时间再根据路程时间=速度算出小张骑自行车的速度(2)根据由小张的速度可知:B(10,0),设出一次函数解析式,用待定系数法求解即可.(3)求出CD的解析式,列出方程,求解即可.【详解】解:(1)由题意得:(米/分),答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B(10,0),设直线AB的解析式为:y=kx+b,把A(6,1200)和B(10,0)代入得: 解得: 小张停留后再出发时y与x之间的函数表达式; (3)小李骑摩托车所用的时间: C(6,0),D(9,2400),同理得:CD的解析式为:y=800x4800,
20、则 答:小张与小李相遇时x的值是分【点睛】考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.21、(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析【解析】分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;(2)根据学校总人数乘以骑自行车所占的百分比,可得答案.详解:(1)乘公交车所占的百分比=,调查的样本容量50=300人,骑自行车的人数300=100人,骑自行车的人数多,多10050=50人;(2
21、)全校骑自行车的人数2400=800人,800600,故学校准备的600个自行车停车位不足够点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键扇形统计图直接反映部分占总体的百分比大小.22、ADE是等腰三角形;证明过程见解析.【解析】试题分析:当四边形EDDF为菱形时,ADE是等腰三角形,ADEEFC先证明CD=DA=DB,得到DAC=DCA,由ACAC即可得到DAE=DEA由此即可判断DAE的形状由EFAB推出CEF=EAD,EFC=ADC=ADE,再根据AD=DE=EF即可证明试题解析:当四边形EDDF为菱形时,ADE是等腰三角形,ADEEFC理由:B
22、CA是直角三角形,ACB=90,AD=DB,CD=DA=DB,DAC=DCA,ACAC,DAE=A,DEA=DCA,DAE=DEA,DA=DE,ADE是等腰三角形四边形DEFD是菱形,EF=DE=DA,EFDD,CEF=DAE,EFC=CDA,CDCD,ADE=ADC=EFC,在ADE和EFC中,ADEEFC考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质23、(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;(3)当100k150时,购进电冰箱38台,空调62台,总利润最大;当0k100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,
23、无论采取哪种方案,y1恒为20000元【解析】(1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k100)x+20000,分三种情况讨论即可【详解】(1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,由题意得, m=1200,经检验,m=1200是原分式方程的解,也符合题意,m+300=1500元,答:每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)由题意,y=(16001500)x+(14001200)(100x)=100x+20000,33x38,x为正整数,
24、x=34,35,36,37,38,即:共有5种方案;(3)设厂家对电冰箱出厂价下调k(0k150)元后,这100台家电的销售总利润为y1元,y1=(16001500+k)x+(14001200)(100x)=(k100)x+20000,当100k150时,y1随x的最大而增大,x=38时,y1取得最大值,即:购进电冰箱38台,空调62台,总利润最大,当0k100时,y1随x的最大而减小,x=34时,y1取得最大值,即:购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元【点睛】本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量
25、关系是解题的关键24、(1)证明见解析;(2)DE=CE,理由见解析;(3) 【解析】试题分析:(1)证明ABEACD,从而得出结论;(2) 先证明CDE=ACD,从而得出结论;(3)解直角三角形示得.试题解析:(1)ABE=ACD,A=A,ABEACD,;(2),又A=A,ADEACB,AED=ABC,AED=ACD+CDE,ABC=ABE+CBE,ACD+CDE=ABE+CBE,ABE=ACD,CDE=CBE,BE平分ABC,ABE=CBE,CDE=ABE=ACD,DE=CE;(3)CDAB,ADC=BDC=90,A+ACD=CDE+ADE=90,ABE=ACD,CDE=ACD,A=ADE,BEC=ABE+A=A+ACD=90,AE=DE,BEAC,DE=CE,AE=DE=CE,AB=BC,AD=2,BD=3,BC=AB=AD+BD=5,在RtBDC中,在RtADC中,ADC=FEC=90,