《2023届辽宁省丹东第九中学中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届辽宁省丹东第九中学中考数学模拟精编试卷含解析.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知二次函数y=-x2-4x-5,左、右
2、平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为( )Ay=-x2-4x-1By=-x2-4x-2Cy=-x2+2x-1Dy=-x2+2x-22将一根圆柱形的空心钢管任意放置,它的主视图不可能是()ABCD3如图,是半圆的直径,点、是半圆的三等分点,弦.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为()ABCD4如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是( )ABCD5绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n100300400600100020003000发芽的粒数m9628238257094819042850发芽的频率
3、0.9600.9400.9550.9500.9480.9520.950下面有三个推断:当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;根据上表,估计绿豆发芽的概率是0.95;若n为4000,估计绿豆发芽的粒数大约为3800粒其中推断合理的是()ABCD6下列图形中,既是中心对称图形,又是轴对称图形的是( )ABCD7下列调查中,最适合采用普查方式的是()A对太原市民知晓“中国梦”内涵情况的调查B对全班同学1分钟仰卧起坐成绩的调查C对2018年央视春节联欢晚会收视率的调查D对2017年全国快递包裹产生的包装垃圾数量的调查8若,则的值为( )A6 B6 C18 D309
4、最小的正整数是()A0 B1 C1 D不存在10把多项式ax32ax2+ax分解因式,结果正确的是()Aax(x22x)Bax2(x2)Cax(x+1)(x1)Dax(x1)2二、填空题(共7小题,每小题3分,满分21分)11如图,已知l1l2l3,相邻两条平行直线间的距离相等若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tan的值是_12已知x=2是一元二次方程x22mx+4=0的一个解, 则m的值为 13分式方程-1=的解是x=_.14分解因式:ax2a=_15因式分解:2m28n2= 16不等式组的最小整数解是_17如图,CE是ABCD的边AB的垂直平
5、分线,垂足为点O,CE与DA的延长线交于点E连接AC,BE,DO,DO与AC交于点F,则下列结论:四边形ACBE是菱形;ACDBAE;AF:BE2:1;S四边形AFOE:SCOD2:1其中正确的结论有_(填写所有正确结论的序号)三、解答题(共7小题,满分69分)18(10分)先化简,再求值,其中x=119(5分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率20(8分)某同学报名参加学校秋
6、季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 21(10分)(1)计算:|2|(2015)0+()22sin60+;(2)先化简,再求值:(2+),其中a= 22(10分)如图,在ABC中,BC12,tanA,B30;求AC和AB的长23(
7、12分)关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22x1x2=8,求m的值24(14分)如图,直线l切O于点A,点P为直线l上一点,直线PO交O于点C、B,点D在线段AP上,连接DB,且ADDB(1)求证:DB为O的切线;(2)若AD1,PBBO,求弦AC的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析
8、式【详解】解:y=x14x5=(x+1)11,顶点坐标是(1,1)由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=x的图象上,即顶点的横纵坐标互为相反数左、右平移时,顶点的纵坐标不变,平移后的顶点坐标为(1,1),函数解析式是:y=(x1)11=x1+1x1,即:y=x1+1x1故选D【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变同时考查了二次函数的性质,正比例函数y=x的图象上点的坐标特征2、A【解析】试题解析:一根圆柱形的空心钢管任意放置,不管钢管怎么放置,它的三视图始终是,主视图是它们中一个,主视
9、图不可能是故选A.3、D【解析】连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OCBD且BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案【详解】解:如图,连接OC、OD、BD,点C、D是半圆O的三等分点,AOC=COD=DOB=60,OC=OD,COD是等边三角形,OC=OD=CD,OB=OD,BOD是等边三角形,则ODB=60,ODB=COD=60,OCBD,S阴影=S扇形OBD,S半圆O,飞镖落在阴影区域的概率,故选:D【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解
10、题的关键是把求不规则图形的面积转化为求规则图形的面积4、B【解析】找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.【详解】解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.故选B【点睛】本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.5、D【解析】利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,错误;利用频率估计概率,大量反复试验下频率稳定值即概率,可得正确;用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,正确【详解】当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大
11、约是0.955,此推断错误;根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;若n为4000,估计绿豆发芽的粒数大约为40000.950=3800粒,此结论正确故选D【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比6、C【解析】根据中心对称图形和轴对称图形对各选项分析判断即可得解【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误
12、故选C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合7、B【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似详解:A、调查范围广适合抽样调查,故A不符合题意;B、适合普查,故B符合题意;C、调查范围广适合抽样调查,故C不符合题意;D、调查范围广适合抽样调查,故D不符合题意;故选:B点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意
13、义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查8、B【解析】试题分析:,即,原式=12+18=1故选B考点:整式的混合运算化简求值;整体思想;条件求值9、B【解析】根据最小的正整数是1解答即可【详解】最小的正整数是1故选B【点睛】本题考查了有理数的认识,关键是根据最小的正整数是1解答10、D【解析】先提取公因式ax,再根据完全平方公式把x22x+1继续分解即可.【详解】原式=ax(x22x+1)=ax(x1)2,故选D【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:提公因式法;公式法;十字相乘法;分组分解法
14、. 因式分解必须分解到每个因式都不能再分解为止.二、填空题(共7小题,每小题3分,满分21分)11、【解析】如图,分别过点A,B作AE,BF,BD,垂足分别为E,F,D.ABC为等腰直角三角形,AC=BC,ACB=90,ACE+BCF=90.AE,BFCAE+ACE=90,CBF+BCF=90,CAE=BCF,ACE=CBF.CAE=BCF,AC=BC,ACE=CBF,ACECBF,CE=BF,AE=CF.设平行线间距离为d=l,则CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3,tan=tanBAD=.点睛:分别过点A,B作AE,BF,BD,垂足分别为E,F,D,可根据ASA
15、证明ACECBF,设平行线间距离为d=1,进而求出AD、BD的值;本题考查了全等三角形的判定和锐角三角函数,解题的关键是合理添加辅助线构造全等三角形;12、1【解析】试题分析:直接把x=1代入已知方程就得到关于m的方程,再解此方程即可试题解析:x=1是一元二次方程x1-1mx+4=0的一个解,4-4m+4=0,m=1考点:一元二次方程的解13、-5【解析】两边同时乘以(x+3)(x-3),得6-x2+9=-x2-3x,解得:x=-5,检验:当x=-5时,(x+3)(x-3)0,所以x=-5是分式方程的解,故答案为:-5.【点睛】本题考查了解分式方程,解题的关键是方程两边同时乘以最简公分母,切记
16、要进行检验.14、【解析】先提公因式,再套用平方差公式.【详解】ax2a=a(x2-1)=故答案为:【点睛】掌握因式分解的一般方法:提公因式法,公式法.15、2(m+2n)(m2n)【解析】试题分析:根据因式分解法的步骤,有公因式的首先提取公因式,可知首先提取系数的最大公约数2,进一步发现提公因式后,可以用平方差公式继续分解解:2m28n2,=2(m24n2),=2(m+2n)(m2n)考点:提公因式法与公式法的综合运用16、-1【解析】分析:先求出每个不等式的解集,再求出不等式组的解集,即可得出答案详解: .解不等式得:x-3,解不等式得:x1,不等式组的解集为-3x1,不等式组的最小整数解
17、是-1,故答案为:-1点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键17、【解析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.【详解】四边形ABCD是平行四边形,ABCD,AB=CD,EC垂直平分AB,OA=OB=AB=DC,CDCE,OADC,=,AE=AD,OE=OC,OA=OB,OE=OC,四边形ACBE是平行四边形,ABEC,四边形ACBE是菱形,故正确,DCE=90,DA=AE,AC=AD=AE,ACD=ADC=BAE,故正确,OACD,故错误,设AOF的面积为a,则OFC的面积为2a,C
18、DF的面积为4a,AOC的面积=AOE的面积=1a,四边形AFOE的面积为4a,ODC的面积为6aS四边形AFOE:SCOD=2:1故正确.故答案是:【点睛】此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.三、解答题(共7小题,满分69分)18、1【解析】先根据分式的运算法则进行化简,再代入求值.【详解】解:原式=()=;将x=1代入原式=1【点睛】分式的化简求值19、(1)(2)【解析】试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;(2)根据题意,列表表示小球摸出的情况,
19、然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.试题解析:解:(1)(2)用表格列出所有可能的结果: 第二次第一次红球1红球2白球黑球红球1(红球1,红球2)(红球1,白球)(红球1,黑球)红球2(红球2,红球1)(红球2,白球)(红球2,黑球)白球(白球,红球1)(白球,红球2)(白球,黑球)黑球(黑球,红球1)(黑球,红球2)(黑球,白球)由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能P(两次都摸到红球)=考点:概率统计20、(1);(1) ;(3);【解析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果
20、数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1=;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P1=故答案为考点:列表法与树状图法21、(1)5+;(2)【解析】试题分析:(1)先分别进行绝对值化简,0指数幂、负指数幂的计算
21、,特殊三角函数值、二次根式的化简,然后再按运算顺序进行计算即可;(2)括号内先通分进行加法运算,然后再进行分式除法运算,最后代入数值进行计算即可.试题解析:(1)原式=21+42+2=21+4+2=5+;(2)原式=,当a=时,原式=22、8+6【解析】如图作CHAB于H在RtBHC求出CH、BH,在RtACH中求出AH、AC即可解决问题;【详解】解:如图作CHAB于H在RtBCH中,BC12,B30,CHBC6,BH6,在RtACH中,tanA,AH8,AC10,【点睛】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型23、
22、(1);(2)m=【解析】(1)根据已知和根的判别式得出=22412m=48m0,求出不等式的解集即可;(2)根据根与系数的关系得出x1+x2=2,x1x2=2m,把x1+xx12+x22x1x2=8变形为(x1+x2)23x1x2=8,代入求出即可【详解】(1)关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根,=22412m=48m0,解得:即m的取值范围是(2)x1,x2是一元二次方程x2+2x+2m=0的两个根,x1+x2=2,x1x2=2m,x12+x22x1x2=8,(x1+x2)23x1x2=8,(2)232m=8,解得:【点睛】本题考查了根的判别式和根与系数的关系,能熟记根的判别式的内容和根与系数的关系的内容是解此题的关键24、(1)见解析;(2)AC1【解析】(1)要证明DB为O的切线,只要证明OBD90即可(2)根据已知及直角三角形的性质可以得到PD2BD2DA2,再利用等角对等边可以得到ACAP,这样求得AP的值就得出了AC的长【详解】(1)证明:连接OD;PA为O切线,OAD90;在OAD和OBD中,OADOBD,OBDOAD90,OBBDDB为O的切线(2)解:在RtOAP中;PBOBOA,OP2OA,OPA10,POA602C,PD2BD2DA2,OPAC10,ACAP1【点睛】本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况