《辽宁省丹东市第十四中学2023届中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省丹东市第十四中学2023届中考数学模拟精编试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如果关于x的方程没有实数根,那么c在2、1、0、中取值是( )A;B;C;D2化简的结果是( )A4
2、B4C2D23如图,已知AC是O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交O于点E,若AOB=3ADB,则()ADE=EBBDE=EBCDE=DODDE=OB4在同一平面直角坐标系中,函数y=x+k与(k为常数,k0)的图象大致是()ABCD5(2011雅安)点P关于x轴对称点为P1(3,4),则点P的坐标为( )A(3,4) B(3,4)C(4,3) D(3,4)6如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是( )ABCD7若关于x的一元二次方程(k1)x24x10有两个不相等的实数根,则k的取值范围是( )Ak5Bk58袋子中装有4个黑球
3、和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球下列事件是必然事件的是( )A摸出的三个球中至少有一个球是黑球B摸出的三个球中至少有一个球是白球C摸出的三个球中至少有两个球是黑球D摸出的三个球中至少有两个球是白球9如图,在RtABC中,ACB=90,AC=BC=1,将绕点A逆时针旋转30后得到RtADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )ABC-D10济南市某天的气温:-58,则当天最高与最低的温差为( )A13B3C-13D-311下表是某校合唱团成员的年龄分布.年龄/岁13141516频数515x对于不同的x,下列关于年龄的统计
4、量不会发生改变的是( )A众数、中位数B平均数、中位数C平均数、方差D中位数、方差12若正多边形的一个内角是150,则该正多边形的边数是( )A6 B12 C16 D18二、填空题:(本大题共6个小题,每小题4分,共24分)13已知a+2,求a2+_14函数y中,自变量x的取值范围是_15如图,已知正方形边长为4,以A为圆心,AB为半径作弧BD,M是BC的中点,过点M作EMBC交弧BD于点E,则弧BE的长为_16已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是_17如图,在平面直角坐标系中,菱形OABC的面积为12,点B
5、在y轴上,点C在反比例函数y=的图象上,则k的值为_.18已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形
6、统计图中玉兰所对的圆心角为 ,并补全条形统计图;该区今年共种植月季8000株,成活了约 株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.20(6分)给出如下定义:对于O的弦MN和O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当MPN+MON180时,则称点P是线段MN关于点O的关联点图1是点P为线段MN关于点O的关联点的示意图在平面直角坐标系xOy中,O的半径为1(1)如图2,已知M(,),N(,),在A(1,0),B(1,1),C(,0)三点中,是线段MN关于点O的关联点的是 ;(2)如图3,M(0,1),N(,),点
7、D是线段MN关于点O的关联点MDN的大小为 ;在第一象限内有一点E(m,m),点E是线段MN关于点O的关联点,判断MNE的形状,并直接写出点E的坐标;点F在直线yx+2上,当MFNMDN时,求点F的横坐标x的取值范围21(6分)关于x的一元二次方程mx2+(3m2)x61(1)当m为何值时,方程有两个不相等的实数根;(2)当m为何整数时,此方程的两个根都为负整数22(8分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共_人;(2)请
8、你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.23(8分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一20.04二100.2三14b四a0.32五80.16请根据表格提供的信息,解答以下问题:本次决赛共有 名学生参加;直接写出表中a= ,b= ;请补全下面相应
9、的频数分布直方图;若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 24(10分)已知:如图,MNQ中,MQNQ(1)请你以MN为一边,在MN的同侧构造一个与MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD中,B=D求证:CD=AB25(10分)如图,在平面直角坐标系xOy中,直线与函数的图象的两个交点分别为A(1,5),B(1)求,的值;(2)过点P(n,0)作x轴的垂线,与直线和函数的图象的交点分别为点M,N,当点M在点N下方时,写出n的取值范围26(12分)已知一次函数yx+1与抛物线yx2+bx+c交A(m
10、,9),B(0,1)两点,点C在抛物线上且横坐标为1(1)写出抛物线的函数表达式;(2)判断ABC的形状,并证明你的结论;(3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符合条件的Q的坐标,如果不存在,说说你的理由27(12分)解不等式 ,并把它的解集表示在数轴上.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】分析:由方程根的情况,根据根的判别式可求得c的取值范围,则可求得答案详解:关于x的方程x1+1x+c=0没有实数根,0,即114c0,解得:c1,c在1、1、0、3中取值是1故
11、选A点睛:本题主要考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键2、B【解析】根据算术平方根的意义求解即可【详解】 4,故选:B【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.3、D【解析】解:连接EO.B=OEB,OEB=D+DOE,AOB=3D,B+D=3D,D+DOE+D=3D,DOE=D,ED=EO=OB,故选D.4、B【解析】选项A中,由一次函数y=x+k的图象知k0,矛盾,所以选项A错误;选项B中,由一次函数y=x+
12、k的图象知k0,由反比例函数y=的图象知k0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误故选B.5、A【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,点P的坐标为(3,4)故选A6、A【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图详解:该几何体的左视图是:故选A点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力7、B【解析】试题解析:关于x的一元二次方程方程有两个不相等的实数根,即,解得:k5且k1故选B8、A【解析】根据必然事件的概念:在一定条件下,必然发生的事
13、件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误故选A9、A【解析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到RtADERtACB,于是S阴影部分=SADE+S扇形ABD-SABC=S扇形ABD【详解】ACB=90,AC=BC=1,AB=,S扇形ABD=,又RtABC绕A点逆时针旋转30后得到RtADE,RtADERtACB,S阴影部分=SADE+S扇形ABDSABC=S扇形ABD=,故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.10
14、、A【解析】由题意可知,当天最高温与最低温的温差为8-(-5)=13,故选A.11、A【解析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为,则总人数为,故该组数据的众数为14岁,中位数为(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键12、B【解析】设多边形的边数为n,则有(n-2)
15、180=n150,解得:n=12,故选B.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】试题分析:=4,=4-1=1故答案为1考点:完全平方公式14、x1【解析】分析:根据二次根式有意义的条件解答即可.详解:二次根式有意义,被开方数为非负数,1 -x0,解得x1.故答案为x1.点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键.15、【解析】延长ME交AD于F,由M是BC的中点,MFAD,得到F点为AD的中点,即AF=AD,则AEF=30,得到BAE=30,再利用弧长公式计算出弧BE的长【详解】延长ME交AD于F,如图,M是BC的中点
16、,MFAD,F点为AD的中点,即AF=AD又AE=AD,AE=2AF,AEF=30,BAE=30,弧BE的长=故答案为【点睛】本题考查了弧长公式:l=也考查了在直角三角形中,一直角边是斜边的一半,这条直角边所对的角为30度16、8个【解析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数【详解】袋中小球的总个数是:2=8(个)故答案为8个【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键17、-6【解析】因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,),则点A的坐标为(x,),点B的坐标为(0,),因此
17、AC=2x,OB=,根据菱形的面积等于对角线乘积的一半得:,解得18、-2【解析】试题分析:根据题意可得2k+32,k2,解得k2因k为整数,所以k=2考点:一次函数图象与系数的关系三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)72,见解析;(2)7280;(3).【解析】(1)根据题意列式计算,补全条形统计图即可;(2)根据题意列式计算即可;(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率【详解】(1)扇形统计图中玉兰所对的圆心角为360(1-40%-15%-25%)=72月季的株数为200090%
18、-380-422-270=728(株),补全条形统计图如图所示:(2)月季的成活率为所以月季成活株数为800091%=7280(株). 故答案为:7280.(3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A、B、C、D表示,画树状图如下:所有等可能的情况有12种,其中恰好选到成活率较高的两类花苗有2种.P(恰好选到成活率较高的两类花苗)【点睛】此题主要考查了条形统计图以及扇形统计图的应用,根据统计图得出正确信息是解题关键20、(1)C;(2)60;E(,1);点F的横坐标x的取值范围xF【解析】(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径
19、的圆上,所以点C满足条件;(2)如图3-1中,作NHx轴于H求出MON的大小即可解决问题;如图3-2中,结论:MNE是等边三角形由MON+MEN=180,推出M、O、N、E四点共圆,可得MNE=MOE=60,由此即可解决问题;如图3-3中,由可知,MNE是等边三角形,作MNE的外接圆O,首先证明点E在直线y=-x+2上,设直线交O于E、F,可得F(,),观察图形即可解决问题;【详解】(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件,故答案为C(2)如图3-1中,作NHx轴于HN(,-),tanNOH=,NOH=30,MON=90+30=120,点D
20、是线段MN关于点O的关联点,MDN+MON=180,MDN=60故答案为60如图3-2中,结论:MNE是等边三角形理由:作EKx轴于KE(,1),tanEOK=,EOK=30,MOE=60,MON+MEN=180,M、O、N、E四点共圆,MNE=MOE=60,MEN=60,MEN=MNE=NME=60,MNE是等边三角形如图3-3中,由可知,MNE是等边三角形,作MNE的外接圆O,易知E(,1),点E在直线y=-x+2上,设直线交O于E、F,可得F(,),观察图象可知满足条件的点F的横坐标x的取值范围xF【点睛】此题考查一次函数综合题,直线与圆的位置关系,等边三角形的判定和性质,锐角三角函数,
21、解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题21、 (1) m1且m;(2) m=-1或m=-2.【解析】(1)由方程有两个不相等的实数根,可得1,列出关于m的不等式解之可得答案;(2) 解方程,得:,由m为整数,且方程的两个根均为负整数可得m的值.【详解】解:(1) =-4ac=(3m-2)+24m=(3m+2)1当m1且m时,方程有两个不相等实数根. (2)解方程,得:,m为整数,且方程的两个根均为负整数,m=-1或m=-2.m=-1或m=-2时,此方程的两个根都为负整数【点睛】本题主要考查利用一元二次方程根的情况求参数.22、(1)100;(2)见解析;(3)108;(
22、4)1250.【解析】试题分析:(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360,即可得出答案;(4)根据样本估计总体,可得答案试题解析:(1)这四个班参与大赛的学生数是:3030%=100(人);故答案为100;(2)丁所占的百分比是:100%=35%,丙所占的百分比是:130%20%35%=15%,则丙班得人数是:10015%=15(人);如图:(3
23、)甲班级所对应的扇形圆心角的度数是:30%360=108;(4)根据题意得:2000=1250(人)答:全校的学生中参与这次活动的大约有1250人考点:条形统计图;扇形统计图;样本估计总体.23、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)20.04=50(2)500.32=16 1450=0.28(3)(4)(0.
24、32+0.16)100%=48%考点:频数分布直方图24、(1)作图见解析;(2)证明书见解析.【解析】(1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则MNF为所画三角形(2)延长DA至E,使得AE=CB,连结CE证明EACBCA,得:B =E,AB=CE,根据等量代换可以求得答案【详解】解:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求(2)如图,延长DA至E,使得AE=CB,连结CEACB +CAD =180,DACDAC +EAC =180,BACBCA =EAC.在EAC和BAC
25、中,AECE,ACCA,EACBCN,AECEACBCA (SAS).B=E,AB=CE.B=D,D=E.CD=CE,CD=AB考点:1.尺规作图;2.全等三角形的判定和性质25、(1),;(2)0n1或者n1【解析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;【详解】解:(1)A(1,1)在直线上,A(1,1)在的图象上,(2)观察图象可知,满足条件的n的值为:0n1或者n1【点睛】此题考查待定系数法求反比例函数与一次函数的解析式,解题关键在于利用数形结合的思想求解.26、(1)yx27x+1;(2)ABC为直角三角形理由见解析;(3)符合条件的Q的坐标为(4,1),(2
26、4,1),(0,7),(0,13)【解析】(1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;(2)先利用抛物线解析式确定C(1,5),作AMy轴于M,CNy轴于N,如图,证明ABM和BNC都是等腰直角三角形得到MBA45,NBC45,AB8 ,BN1,从而得到ABC90,所以ABC为直角三角形;(3)利用勾股定理计算出AC10 ,根据直角三角形内切圆半径的计算公式得到RtABC的内切圆的半径2 ,设ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BIy轴,PQ为ABC的外角平分线,易得y轴为ABC的外角平分
27、线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI24,则I(4,1),接着利用待定系数法求出直线AI的解析式为y2x7,直线AP的解析式为yx+13,然后分别求出P、Q、G的坐标即可【详解】解:(1)把A(m,9)代入yx+1得m+19,解得m8,则A(8,9),把A(8,9),B(0,1)代入yx2+bx+c得,解得,抛物线解析式为yx27x+1;故答案为yx27x+1;(2)ABC为直角三角形理由如下:当x1时,yx27x+13142+15,则C(1,5),作AMy轴于M,CNy轴于N,如图,B(0,1),A(8,9),C(1,5),BMAM8,BNCN
28、1,ABM和BNC都是等腰直角三角形,MBA45,NBC45,AB8,BN1,ABC90,ABC为直角三角形;(3)AB8,BN1,AC10,RtABC的内切圆的半径,设ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,I为ABC的内心,AI、BI为角平分线,BIy轴,而AIPQ,PQ为ABC的外角平分线,易得y轴为ABC的外角平分线,点I、P、Q、G为ABC的内角平分线或外角平分线的交点,它们到直线AB、BC、AC距离相等,BI24,而BIy轴,I(4,1),设直线AI的解析式为ykx+n,则,解得,直线AI的解析式为y2x7,当x0时,y2x77,则G(0
29、,7);设直线AP的解析式为yx+p,把A(8,9)代入得4+n9,解得n13,直线AP的解析式为yx+13,当y1时,x+131,则P(24,1)当x0时,yx+1313,则Q(0,13),综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,7),(0,13)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键27、x5;数轴见解析【解析】【分析】将(x-2)当做一个整体,先移项,然后再按解一元一次不等式的一般步骤进行求解,求得解集后在数轴上表示即可.【详解】移项,得 ,去分母,得 ,移项,得,不等式的解集为,在数轴上表示如图所示: 【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,根据不等式的特点选择恰当的方法进行求解是关键.