《2023届湖北省宜城市重点名校中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届湖北省宜城市重点名校中考押题数学预测卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1方程组的解x、y满足不等式2xy1,则a的取值范围为()AaBaCaDa2如图,在ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则ADE的周长等于()A8B4C12D1
2、63某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的( )A众数B中位数C平均数D方差4对于一组统计数据1,1,6,5,1下列说法错误的是()A众数是1B平均数是4C方差是1.6D中位数是65在平面直角坐标系中,点(-1,-2)所在的象限是()A第一象限B第二象限C第三象限D第四象限6如图,矩形中,以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点,则的长为( )A3B4CD57抛物线y=ax24ax+4a1与x轴交于A,B两点,
3、C(x1,m)和D(x2,n)也是抛物线上的点,且x12x2,x1+x24,则下列判断正确的是()AmnBmnCmnDmn8下列二次根式中,与是同类二次根式的是( )ABCD9如图,A、B为O上两点,D为弧AB的中点,C在弧AD上,且ACB=120,DEBC于E,若AC=DE,则的值为( )A3BCD10某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )A+18B18C+18D1811如图,已知菱形ABCD的对角线ACBD的长分别为6cm、8cm,AEBC于点
4、E,则AE的长是()ABCD12如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM4,AB6,则BD的长为( )A4B5C8D10二、填空题:(本大题共6个小题,每小题4分,共24分)13写出一个经过点(1,2)的函数表达式_14从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数1004008001 0002 0005 000发芽种子粒数853186527931 6044 005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为_(精确到0.1)15有一组数据:3,a,4,6,7,它们的平
5、均数是5,则a_,这组数据的方差是_16如图,在矩形纸片ABCD中,AB2cm,点E在BC上,且AECE若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC_cm17如图,正方形ABCD内有两点E、F满足AE=1,EF=FC=3,AEEF,CFEF,则正方形ABCD的边长为_182018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有_万人三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,
6、大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为 60,在楼顶B处测得塔顶D处的仰角为45,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高(=1.73,结果保留一位小数)20(6分)某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元求每行驶1千米纯用电的费用;若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?21(6分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小
7、李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示求小张骑自行车的速度;求小张停留后再出发时y与x之间的函数表达式;求小张与小李相遇时x的值22(8分)如图,已知一次函数的图象与反比例函数的图象交于点,与轴、轴交于两点,过作垂直于轴于点.已知.(1)求一次函数和反比例函数的表达式;(2)观察图象:当时,比较. 23(8分)如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么1与2有什么关系?请说明理由;若过O点的直线旋转至图(2)、(3)的情况,其余条件不
8、变,那么图(1)中的1与2的关系成立吗?请说明理由24(10分)如图,在ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。求证:D是BC的中点;如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。25(10分)如图,在RtABC中,C=90,翻折C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)若CEF与ABC相似当AC=BC=2时,AD的长为 ;当AC=3,BC=4时,AD的长为 ;当点D是AB的中点时,CEF与ABC相似吗?请说明理由26(12分)如图,是等腰三角形,.(1)尺规作图:作的角平分线
9、,交于点(保留作图痕迹,不写作法);(2)判断是否为等腰三角形,并说明理由.27(12分)在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表 等级得分x(分)频数(人)A95x1004B90x95mC85x90nD80x8524E75x808F70x754请你根据图表中的信息完成下列问题:(1)本次抽样调查的样本容量是 其中m ,n (2)扇形统计图中,求E等级对应扇形的圆心角的度数;(3)我校九年级共有700名学生,估计体育测试成绩在A、
10、B两个等级的人数共有多少人?(4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】方程组两方程相加表示出2xy,代入已知不等式即可求出a的范围【详解】 +得: 解得: 故选:B【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值2、A【解析】AB的中垂线交BC于D,AC的中垂线交BC于E,DA=DB,EA=EC,则ADE的周长=AD+D
11、E+AE=BD+DE+EC=BC=8,故选A3、B【解析】由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,只需知道中位数即可【详解】由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,故应知道中位数是多少故选B【点睛】本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键4、D【解析】根据中位数、众数、方差等的概念计算即可得解.【详解】A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2= (14)2+(1
12、4)2+(64)2+(54)2+(14)2=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;故选D考点:1.众数;2.平均数;1.方差;4.中位数.5、C【解析】:点的横纵坐标均为负数,点(-1,-2)所在的象限是第三象限,故选C6、B【解析】连接DF,在中,利用勾股定理求出CF的长度,则EF的长度可求【详解】连接DF,四边形ABCD是矩形 在中, 故选:B【点睛】本题主要考查勾股定理,掌握勾股定理的内容是解题的关键7、C【解析】分析:将一般式配方成顶点式,得出对称轴方程根据抛物线与x轴交于两点,得出求得距离对称轴越远,函数的值越大,根据判断
13、出它们与对称轴之间的关系即可判定.详解: 此抛物线对称轴为 抛物线与x轴交于两点,当时,得 故选C点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,8、C【解析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的定义判断即可【详解】A|a|与不是同类二次根式;B与不是同类二次根式;C2与是同类二次根式;D与不是同类二次根式故选C【点睛】本题考查了同类二次根式的定义,一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式9、C【解析】连接 D为弧AB的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:在
14、BC上截取,连接DF,则,根据全等三角形的性质可得: 即 根据等腰三角形的性质可得: 设 则即可求出的值.【详解】如图:连接 D为弧AB的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:在BC上截取,连接DF, 则, 即 根据等腰三角形的性质可得: 设 则 故选C.【点睛】考查弧,弦之间的关系,全等三角形的判定与性质,等腰三角形的性质,锐角三角函数等,综合性比较强,关键是构造全等三角形.10、B【解析】根据前后的时间和是18天,可以列出方程.【详解】若设原来每天生产自行车x辆,根据前后的时间和是18天,可以列出方程.故选B【点睛】本题考核知识点:分式方程的应用. 解题关键点:根据时
15、间关系,列出分式方程.11、D【解析】根据菱形的性质得出BO、CO的长,在RTBOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BCAE,可得出AE的长度【详解】四边形ABCD是菱形,CO=AC=3,BO=BD=,AOBO,又,BCAE=24,即故选D点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分12、D【解析】利用三角形中位线定理求得AD的长度,然后由勾股定理来求BD的长度【详解】解:矩形ABCD的对角线AC,BD相交于点O,BAD=90,点O是线段BD的中点,点M是AB的中点,OM是ABD的中位线,AD=2OM=1在
16、直角ABD中,由勾股定理知:BD=故选:D【点睛】本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、y=x+1(答案不唯一)【解析】本题属于结论开放型题型,可以将函数的表达式设计为一次函数、反比例函数、二次函数的表达式答案不唯一【详解】解:所求函数表达式只要图象经过点(1,2)即可,如y=2x,y=x+1,答案不唯一.故答案可以是:y=x+1(答案不唯一).【点睛】本题考查函数,解题的关键是清楚几种函数的一般式.14、12【解析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到
17、结论【详解】观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,该玉米种子发芽的概率为1.2,故答案为1.2【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比15、5 1 【解析】一组数据:3,a,4,6,7,它们的平均数是5,解得,1.故答案为5,1.16、4【解析】AB=2cm,AB=AB1,AB1=2cm,四边形ABCD是矩形,AE=CE,ABE=AB1E=90AE=CEAB1=B1CAC=4cm17、 【解析】分析:连接AC,交EF于点M,可证明AEMCMF,根据条件可求得AE、EM、FM、CF,再结合勾股定理可求得AB详解
18、:连接AC,交EF于点M,AE丄EF,EF丄FC,E=F=90,AME=CMF, AEMCFM,AE=1,EF=FC=3,EM=,FM=,在RtAEM中,AM2=AE2+EM2=1+=,解得AM=,在RtFCM中,CM2=CF2+FM2=9+=,解得CM=,AC=AM+CM=5,在RtABC中,AB=BC,AB2+BC2=AC2=25,AB=,即正方形的边长为故答案为:点睛:本题主要考查相似三角形的判定和性质及正方形的性质,构造三角形相似利用相似三角形的对应边成比例求得AC的长是解题的关键,注意勾股定理的应用18、1【解析】分析:用总人数乘以样本中出境游东南亚地区的百分比即可得详解:出境游东南
19、亚地区的游客约有700(116%15%11%13%)=70045%=1(万)故答案为1点睛:本题主要考查扇形统计图与样本估计总体,解题的关键是掌握各项目的百分比之和为1,利用样本估计总体思想的运用三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、塔CD的高度为37.9米【解析】试题分析:首先分析图形,根据题意构造直角三角形本题涉及两个直角三角形,即RtBED和RtDAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC试题解析:作BECD于E可得RtBED和矩形ACEB则有CE=AB=16,AC=BE在RtBED中,DBE=45,DE=BE=
20、AC在RtDAC中,DAC=60,DC=ACtan60=AC16+DE=DC,16+AC=AC,解得:AC=8+8=DE所以塔CD的高度为(8+24)米37.9米,答:塔CD的高度为37.9米20、(1)每行驶1千米纯用电的费用为0.26元(2)至少需用电行驶74千米【解析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题【详解】(1)设每行
21、驶1千米纯用电的费用为x元,根据题意得:=解得:x=0.26经检验,x=0.26是原分式方程的解,答:每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,得:0.26y+(y)(0.26+0.50)39解得:y74,即至少用电行驶74千米21、(1)300米/分;(2)y=300x+3000;(3)分【解析】(1)由图象看出所需时间再根据路程时间=速度算出小张骑自行车的速度(2)根据由小张的速度可知:B(10,0),设出一次函数解析式,用待定系数法求解即可.(3)求出CD的解析式,列出方程,求解即可.【详解】解:(1)由题意得:(米/分),答:小张骑自行车的速
22、度是300米/分;(2)由小张的速度可知:B(10,0),设直线AB的解析式为:y=kx+b,把A(6,1200)和B(10,0)代入得: 解得: 小张停留后再出发时y与x之间的函数表达式; (3)小李骑摩托车所用的时间: C(6,0),D(9,2400),同理得:CD的解析式为:y=800x4800,则 答:小张与小李相遇时x的值是分【点睛】考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.22、(1);(2)【解析】(1)由一次函数的解析式可得出D点坐标,从而得出OD长度,再由ODC与BAC相似及AB与BC的长度得出C、B、A的坐标,进而算出一次函
23、数与反比例函数的解析式;(2)以A点为分界点,直接观察函数图象的高低即可知道答案【详解】解:(1)对于一次函数y=kx-2,令x=0,则y=-2,即D(0,-2),OD=2,ABx轴于B, ,AB=1,BC=2,OC=4,OB=6,C(4,0),A(6,1)将C点坐标代入y=kx-2得4k-2=0,k=,一次函数解析式为y=x-2;将A点坐标代入反比例函数解析式得m=6,反比例函数解析式为y=;(2)由函数图象可知:当0x6时,y1y2;当x=6时,y1=y2;当x6时,y1y2;【点睛】本题考查了反比例函数与一次函数的交点问题熟悉函数图象上点的坐标特征和待定系数法解函数解析式的方法是解答本题
24、的关键,同时注意对数形结合思想的认识和掌握23、详见解析.【解析】(1)根据全等三角形判定中的“SSS”可得出ADCCBA,由全等的性质得DAC=BCA,可证ADBC,根据平行线的性质得出1=1;(1)(3)和(1)的证法完全一样先证ADCCBA得到DAC=BCA,则DABC,从而1=1【详解】证明:1与1相等在ADC与CBA中,ADCCBA(SSS)DAC=BCADABC1=1图形同理可证,ADCCBA得到DAC=BCA,则DABC,1=124、(1)详见解析;(2)详见解析【解析】(1)根据两直线平行,内错角相等求出AFE=DCE,然后利用“角角边”证明AEF和DEC全等,再根据全等三角形
25、的性质和等量关系即可求解;(2)由(1)知AF平行等于BD,易证四边形AFBD是平行四边形,而AB=AC,AD是中线,利用等腰三角形三线合一定理,可证ADBC,即ADB=90,那么可证四边形AFBD是矩形【详解】(1)证明:AFBC,AFE=DCE,点E为AD的中点,AE=DE,在AEF和DEC中,AEFDEC(AAS),AF=CD,AF=BD,CD=BD,D是BC的中点;(2)若AB=AC,则四边形AFBD是矩形理由如下:AEFDEC,AF=CD,AF=BD,CD=BD;AFBD,AF=BD,四边形AFBD是平行四边形,AB=AC,BD=CD,ADB=90,平行四边形AFBD是矩形【点睛】本
26、题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键25、解:(1)或(2)当点D是AB的中点时,CEF与ABC相似理由见解析.【解析】(1)当AC=BC=2时,ABC为等腰直角三角形;若CEF与ABC相似,分两种情况:若CE:CF=3:4,如图1所示,此时EFAB,CD为AB边上的高;若CF:CE=3:4,如图2所示由相似三角形角之间的关系,可以推出A=ECD与B=FCD,从而得到CD=AD=BD,即D点为AB的中点;(2)当点D是AB的中点时,CEF与ABC相似可以推出CFE=A,C=C,从而可以证明两个三角形相似【详解
27、】(1)若CEF与ABC相似当AC=BC=2时,ABC为等腰直角三角形,如答图1所示,此时D为AB边中点,AD=AC=当AC=3,BC=4时,有两种情况:(I)若CE:CF=3:4,如答图2所示,CE:CF=AC:BC,EFBC由折叠性质可知,CDEF,CDAB,即此时CD为AB边上的高在RtABC中,AC=3,BC=4,BC=1cosA=AD=ACcosA=3=(II)若CF:CE=3:4,如答图3所示CEFCAB,CEF=B由折叠性质可知,CEF+ECD=90又A+B=90,A=ECD,AD=CD同理可得:B=FCD,CD=BDAD=BD此时AD=AB=1=综上所述,当AC=3,BC=4时
28、,AD的长为或(2)当点D是AB的中点时,CEF与CBA相似理由如下:如图所示,连接CD,与EF交于点QCD是RtABC的中线CD=DB=AB,DCB=B由折叠性质可知,CQF=DQF=90,DCB+CFE=90,B+A=90,CFE=A,又ACB=ACB,CEFCBA26、(1)作图见解析 (2)为等腰三角形【解析】(1)作角平分线,以B点为圆心,任意长为半径,画圆弧;交直线AB于1点,直线BC于2点,再以2点为圆心,任意长为半径,画圆弧,再以1点为圆心,任意长为半径,画圆弧,相交于3点,连接3点和O点,直线3O即是已知角AOB的对称中心线.(2)分别求出的三个角,看是否有两个角相等,进而判
29、断是否为等腰三角形.【详解】(1)具体如下:(2)在等腰中,BD为ABC的平分线,故,那么在中,是否为等腰三角形.【点睛】本题考查角平分线的作法,以及判定等腰三角形的方法.熟悉了解角平分线的定义以及等腰三角形的判定方法是解题的关键所在.27、(1)80,12,28;(2)36;(3)140人;(4)【解析】(1)用D组的频数除以它所占的百分比得到样本容量;用样本容量乘以B组所占的百分比得到m的值,然后用样本容量分别减去其它各组的频数即可得到n的值;(2)用E组所占的百分比乘以360得到的值;(3)利用样本估计整体,用700乘以A、B两组的频率和可估计体育测试成绩在A、B两个等级的人数;(4)画
30、树状图展示所有12种等可能的结果数,再找出恰好抽到甲和乙的结果数,然后根据概率公式求解【详解】(1)2430%=80,所以样本容量为80;m=8015%=12,n=801242484=28;故答案为80,12,28;(2)E等级对应扇形的圆心角的度数=360=36;(3)700=140,所以估计体育测试成绩在A、B两个等级的人数共有140人;(4)画树状图如下:共12种等可能的结果数,其中恰好抽到甲和乙的结果数为2,所以恰好抽到甲和乙的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率也考查了统计图