上海市实验校2022-2023学年中考数学模拟试题含解析.doc

上传人:茅**** 文档编号:87840167 上传时间:2023-04-18 格式:DOC 页数:22 大小:960KB
返回 下载 相关 举报
上海市实验校2022-2023学年中考数学模拟试题含解析.doc_第1页
第1页 / 共22页
上海市实验校2022-2023学年中考数学模拟试题含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《上海市实验校2022-2023学年中考数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《上海市实验校2022-2023学年中考数学模拟试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列行程最长,途经城市和国家最多的一趟专列全

2、程长13000 km,将13000用科学记数法表示应为( )A0.13105B1.3104C1.3105D131032小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是() 百合花玫瑰花小华6支5支小红8支3支A2支百合花比2支玫瑰花多8元B2支百合花比2支玫瑰花少8元C14支百合花比8支玫瑰花多8元D14支百合花比8支玫瑰花少8元3对于反比例函数y=(k0),下列所给的四个结论中,正确的是()A若点(3,6)在其图象上,则(3,6)也在其图象上B当k0时,y随x的增大而减小C过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩

3、形OAPB的面积为kD反比例函数的图象关于直线y=x成轴对称4下列条件中不能判定三角形全等的是( )A两角和其中一角的对边对应相等B三条边对应相等C两边和它们的夹角对应相等D三个角对应相等53的绝对值是()A3B3C-D6某美术社团为练习素描,他们第一次用120元买了若干本相同的画册,第二次用240元在同一家商店买与上一次相同的画册,这次商家每本优惠4元,结果比上次多买了20本求第一次买了多少本画册?设第一次买了x本画册,列方程正确的是( )ABCD7如图,在矩形ABCD中,连接BD,点O是BD的中点,若点M 在AD边上,连接MO并延长交BC边于点M,连接MB,DM则图中的全等三角形共有( )

4、A3对B4对C5对D6对8如图,四边形ABCD是菱形,AC=8,DB=6,DHAB于H,则DH=( )ABC12D249如图,已知菱形ABCD的对角线ACBD的长分别为6cm、8cm,AEBC于点E,则AE的长是()ABCD10根据天津市北大港湿地自然保护总体规划(20172025),2018年将建立养殖业退出补偿机制,生态补水78000000m1将78000000用科学记数法表示应为()A780105 B78106 C7.8107 D0.7810811如图,在ABCD中,AB1,AC4,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F若ACAB,则FD的长为()A2B3C4

5、D612小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是_14如图所示,直线y=x+1(记为l1)与直线y=mx+n(记为l2)相交于点P(a,2),则关于x

6、的不等式x+1mx+n的解集为_.15如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m水面下降2.5m,水面宽度增加_m16在平面直角坐标系中,P的圆心是(2,a)(a2),半径为2,函数y=x的图象被P截得的弦AB的长为,则a的值是_17已知,如图,ABC中,DEFGBC,ADDFFB123,若EG3,则AC 18阅读材料:如图,C为线段BD上一动点,分别过点B、D作ABBD,EDBD,连接AC、EC设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为1根据以上阅读材料,可构图求出代

7、数式的最小值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着OCBAO的线路移动a= ,b= ,点B的坐标为 ;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间20(6分)如图,在中,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC依题意补全图形;求的度数;若,将

8、射线DA绕点D顺时针旋转交EC的延长线于点F,请写出求AF长的思路21(6分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF. (1)求证:四边形AECF为菱形;(2)若AB4,BC8,求菱形AECF的周长.22(8分)已知关于x的一元二次方程x2+(2m+3)x+m21有两根,求m的取值范围;若+1求m的值23(8分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍两组各自加工零件的数量(件)与时间(时)的函数图象如图所示(1)求甲组加工零件的数量y与时间之间的函数关系式(2)求乙组加

9、工零件总量的值(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?24(10分)如图,已知抛物线经过,两点,顶点为.(1)求抛物线的解析式;(2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.25(10分)已知关于x的一元二次方程.求证:方程有两个不相等的实数根;如果方程的两实根为,且,求m的值26(12分)计算:(2018)04sin45

10、+2127(12分)如图:PCD是等腰直角三角形,DPC=90,APB=135求证:(1)PACBPD;(2)若AC=3,BD=1,求CD的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】试题分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数将13000用科学记数法表示为:1.31故选B考点:科学记数法表示较大的数2、A【解析】设每支百合花x元,每支玫瑰花

11、y元,根据总价单价购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论【详解】设每支百合花x元,每支玫瑰花y元,根据题意得:8x+3y(6x+5y)8,整理得:2x2y8,2支百合花比2支玫瑰花多8元故选:A【点睛】考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键3、D【解析】分析:根据反比例函数的性质一一判断即可;详解:A若点(3,6)在其图象上,则(3,6)不在其图象上,故本选项不符合题意; B当k0时,y随x的增大而减小,错误,应该是当k0时,在每个象限,y随x的增大而减小;故本选项不符合题意; C错误,应该是过图象上任一点

12、P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意; D正确,本选项符合题意 故选D点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型4、D【解析】解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;C、符合SAS,能判定三角形全等;D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;故选D5、B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1故选B【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它

13、的相反数.6、A【解析】分析:由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程详解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:.故选A.点睛:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答即可.7、D【解析】根据矩形的对边平行且相等及其对称性,即可写出图中的全等三角形的对数.【详解】图中图中的全等三角形有ABMCDM,ABDCDB, OBMODM,OBMODM, MBMMDM, DBMBDM,故选D.【点睛】此题主要考查矩形的性质及全等三角形的判定,解题的关键是熟知

14、矩形的对称性.8、A【解析】解:如图,设对角线相交于点O,AC=8,DB=6,AO=AC=8=4,BO=BD=6=3,由勾股定理的,AB=5,DHAB,S菱形ABCD=ABDH=ACBD,即5DH=86,解得DH=故选A【点睛】本题考查菱形的性质9、D【解析】根据菱形的性质得出BO、CO的长,在RTBOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BCAE,可得出AE的长度【详解】四边形ABCD是菱形,CO=AC=3,BO=BD=,AOBO,又,BCAE=24,即故选D点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分10、

15、C【解析】科学记数法记数时,主要是准确把握标准形式a10n即可.【详解】解:78000000= 7.8107.故选C.【点睛】科学记数法的形式是a10n,其中1a10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.11、C【解析】利用平行四边形的性质得出ADFEBF,得出=,再根据勾股定理求出BO的长,进而得出答案【详解】解:在ABCD中,对角线AC、BD相交于O,BO=DO,AO=OC,ADBC,ADFEBF,=,AC=4,AO=2,AB=1,ACAB,BO=3,BD=6,E是BC的中点,=,BF=2, FD=4.故选C.【点睛】本题考查了勾股定理与相似三角形的判定与性质,解

16、题的关键是熟练的掌握勾股定理与相似三角形的判定与性质.12、A【解析】圆柱体的底面积为:()2,矿石的体积为:()2h= .故答案为.二、填空题:(本大题共6个小题,每小题4分,共24分)13、乙【解析】据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即可得出答案【详解】解:S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,S乙2S丁2S甲2S丙2,二月份白菜价格最稳定的市场是乙;故答案为:乙【点睛】本题考查方差的意义解题关键是掌握方差的意义:方差是用来衡量一组数据波动大小的量,方差越大

17、,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定14、x1【解析】把y=2代入y=x+1,得x=1,点P的坐标为(1,2),根据图象可以知道当x1时,y=x+1的函数值不小于y=mx+n相应的函数值,因而不等式x+1mx+n的解集是:x1,故答案为x1【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合15、1.【解析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水

18、面宽度,即可得出答案【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,抛物线解析式为y=-0.5x1+1,当水面下降1.5米,通过抛物线在图上的观察可转化为:当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1.5代入抛物线解析式得出:-1.5=-0.5x1+1,解得:x=3,13-4=1,所以水面下降1.5

19、m,水面宽度增加1米故答案为1【点睛】本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型16、2+【解析】试题分析:过P点作PEAB于E,过P点作PCx轴于C,交AB于D,连接PAPEAB,AB=2,半径为2, AE=AB=,PA=2, 根据勾股定理得:PE=1,点A在直线y=x上,AOC=45,DCO=90, ODC=45,OCD是等腰直角三角形, OC=CD=2, PDE=ODC=45,DPE=PDE=45, DE=PE=1, PD=P的圆心是(2,a), a=PD+DC=2+【点睛

20、】本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45,这一个条件的应用也是很重要的17、1【解析】试题分析:根据DEFGBC可得ADEAFGABC,根据题意可得EG:AC=DF:AB=2:6=1:3,根据EG=3,则AC=1考点:三角形相似的应用18、4【解析】根据已知图象,重新构造直角三角形,利用三角形相似得出CD的长,进而利用勾股定理得出最短路径问题【详解】如图所示:C为线段BD上一动点,分别过点B、D作ABBD

21、,EDBD,连接AC、EC设CD=x,若AB=5,DE=3,BD=12,当A,C,E,在一条直线上,AE最短,ABBD,EDBD,ABDE,ABCEDC,解得:DC=即当x=时,代数式有最小值,此时为:故答案是:4【点睛】考查最短路线问题,利用了数形结合的思想,可通过构造直角三角形,利用勾股定理求解三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒【解析】试题分析:(1)根据可以求得的值,根据长方形的性质,可以求得点的坐标;(2)根据题意点从原点

22、出发,以每秒2个单位长度的速度沿着的线路移动,可以得到当点移动4秒时,点的位置和点的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点移动的时间即可试题解析:(1)a、b满足a4=0,b6=0,解得a=4,b=6,点B的坐标是(4,6),故答案是:4,6,(4,6);(2)点P从原点出发,以每秒2个单位长度的速度沿着OCBAO的线路移动,24=8,OA=4,OC=6,当点P移动4秒时,在线段CB上,离点C的距离是:86=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位

23、长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:52=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.20、(1)见解析;(2)90;(3)解题思路见解析.【解析】(1)将线段AD绕点A逆时针方向旋转90,得到线段AE,连结EC(2)先判定ABDACE,即可得到,再根据,即可得出;(3)连接DE,由于ADE为等腰直角三角形,所以可求;由, ,可求的度数和的度数,从而可知DF的长;过点A作于点H,在RtADH中,由,AD=1可求AH、DH的长;由DF

24、、DH的长可求HF的长;在RtAHF中,由AH和HF,利用勾股定理可求AF的长【详解】解:如图,线段AD绕点A逆时针方向旋转,得到线段AE,在和中,中,;连接DE,由于为等腰直角三角形,所以可求;由,可求的度数和的度数,从而可知DF的长;过点A作于点H,在中,由,可求AH、DH的长;由DF、DH的长可求HF的长;在中,由AH和HF,利用勾股定理可求AF的长故答案为(1)见解析;(2)90;(3)解题思路见解析.【点睛】本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角21、(1)见解析;(2)1【解析】(1)根据ASA推出:AEOCF

25、O;根据全等得出OE=OF,推出四边形是平行四边形,再根据EFAC即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8x在RtABF中,由勾股定理求出x的值,即可得到结论【详解】(1)EF是AC的垂直平分线,AO=OC,AOE=COF=90四边形ABCD是矩形,ADBC,EAO=FCO在AEO和CFO中,AEOCFO(ASA);OE=OF又OA=OC,四边形AECF是平行四边形又EFAC,平行四边形AECF是菱形;(2)设AF=xEF是AC的垂直平分线,AF=CF=x,BF=8x在RtABF中,由勾股定理得:AB2+BF2=AF2,42+(

26、8x)2=x2,解得:x=5,AF=5,菱形AECF的周长为1【点睛】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想22、 (1)m;(2)m的值为2【解析】(1)根据方程有两个相等的实数根可知1,求出m的取值范围即可;(2)根据根与系数的关系得出+与的值,代入代数式进行计算即可【详解】(1)由题意知,(2m+2)241m21,解得:m;(2)由根与系数的关系得:+(2m+2),m2,+1,(2m+2)+m21,解得:m11,m12,由(1)知m,所以m11应舍去,m的值为2【点睛】本题考查的是根与系数的关系,熟

27、知x1,x2是一元二次方程ax2+bx+c1(a1)的两根时,x1+x2,x1x2是解答此题的关键23、 (1)见解析(2)300(3)2小时【解析】解:(1)设甲组加工的零件数量y与时间x的函数关系式为根据题意,得,解得所以,甲组加工的零件数量y与时间x的函数关系式为:. (2)当时,因为更换设备后,乙组工作效率是原来的2倍,所以,解得 (3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为当0x2时,解得舍去当2x2.8时,解得舍去当2.8x4.8时,解得所以,经过3小时恰好装满第1箱当3x4.8时,解得舍去当4.8x6时解得因为53=2,所以,再经过2小时恰好装满第2箱24、

28、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.【解析】分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2),OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)将原抛物线沿y轴向下平移1个单位后过点C平移后的抛物线解析式为:y=x2-3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想详解: (1)已知抛物线经过,,解得,所求抛物线的解析式为.(2),,可得旋转后点的坐标为.当时,由得,

29、可知抛物线过点.将原抛物线沿轴向下平移1个单位长度后过点.平移后的抛物线解析式为:.(3)点在上,可设点坐标为,将配方得,其对称轴为.由题得(0,1)当时,如图,此时,点的坐标为.当时,如图,同理可得,此时,点的坐标为.综上,点的坐标为或.点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用25、(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的的值大于0即可;(1)根据根与系数的关系可以得到关于m的方程,从而可以求得m的值

30、试题解析:(1)证明:,=(m3)141(m)=m11m+9=(m1)1+80,方程有两个不相等的实数根;(1),方程的两实根为,且, , ,(m3)13(m)=7,解得,m1=1,m1=1,即m的值是1或126、.【解析】根据零指数幂和特殊角的三角函数值进行计算【详解】解:原式14+212+2【点睛】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方27、(1)见解析;(2).【解析】(1)由PCD是等腰直角三角形,DPC=90,APB=135,可得PAB=PBD,BPD=PAC,从而即可证明;(2)根据相似三角形对应边成比例即可求出PC=PD=,再由勾股定理即可求解【详解】证明:(1)PCD是等腰直角三角形,DPC=90,APB=135,APC+BPD=45,又PAB+PBA=45,PBA+PBD=45,PAB=PBD,BPD=PAC,PCA=PDB,PACBPD;(2),PC=PD,AC=3,BD=1PC=PD=,CD=【点睛】本题考查了相似三角形的判定与性质及等腰直角三角形,属于基础题,关键是掌握相似三角形的判定方法

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁