《上海市建平西校2022-2023学年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《上海市建平西校2022-2023学年中考一模数学试题含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知实数a0,则下列事件中是必然事件的是()Aa+30Ba30C3a0Da302如图,每个小正方形的边长为1,A、B、C
2、是小正方形的顶点,则ABC的度数为( )A90B60C45D303地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A64105B6.4105C6.4106D6.41074如图,则的度数为( )A115B110C105D655关于的方程有实数根,则整数的最大值是( )A6B7C8D96如图,点A、B、C是O上的三点,且四边形ABCO是平行四边形,OFOC交圆O于点F,则BAF等于()A12.5B15C20D22.57下列四个图形中,是中心对称图形的是( )ABCD8共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个
3、月多440辆设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A1000(1+x)21000+440B1000(1+x)2440C440(1+x)21000D1000(1+2x)1000+4409如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是( )A着B沉C应D冷10老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接AC、DG,交点为F,下列四位同学的说法不正确的是( )A甲B乙C丙D丁11如图,将ABC绕点C顺时针旋转90得到EDC若点A,D,E在同一条直线上,ACB=20,则ADC的度数是A55B60C65D
4、7012某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( )A8米B米C米D米二、填空题:(本大题共6个小题,每小题4分,共24分)13若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实根,则=_14如图,在ABCD中,AB=8,P、Q为对角线AC的三等分点,延长DP交AB于点M,延长MQ交CD于点N,则CN=_15已知抛物线 的部分图象如图所示,根据函数图象可知,当 y0 时,x 的取值范围是_16如图,小红作出了边长为1的第1个正A1B1C1,算出了正A1B1C1的面积,然后分别取A1B1C1三边的中点A2,B2,C2
5、,作出了第2个正A2B2C2,算出了正A2B2C2的面积,用同样的方法,作出了第3个正A3B3C3,算出了正A3B3C3的面积,由此可得,第8个正A8B8C8的面积是_17如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_km18若方程x22x10的两根分别为x1,x2,则x1+x2x1x2的值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图抛
6、物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点(1)求抛物线的解析式,并直接写出点D的坐标;(2)当AMN的周长最小时,求t的值;(3)如图,过点M作MEx轴,交抛物线y=ax2+bx于点E,连接EM,AE,当AME与DOC相似时请直接写出所有符合条件的点M坐标20(6分)如图1,抛物线l1:y=x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5)(1)求抛物线
7、l2的函数表达式;(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MNy轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值21(6分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y ()与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段请根据图中信息解答下列问题:求这天的温度y与时间x(0x24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低
8、于10时,蔬菜会受到伤害问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?22(8分)嘉兴市20102014年社会消费品零售总额及增速统计图如下:请根据图中信息,解答下列问题:(1)求嘉兴市20102014年社会消费品零售总额增速这组数据的中位数(2)求嘉兴市近三年(20122014年)的社会消费品零售总额这组数据的平均数(3)用适当的方法预测嘉兴市2015年社会消费品零售总额(只要求列出算式,不必计算出结果)23(8分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元从2015年到
9、2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?24(10分)如图,AB是O的直径,点C在AB的延长线上,CD与O相切于点D,CEAD,交AD的延长线于点E(1)求证:BDC=A;(2)若CE=4,DE=2,求AD的长25(10分)先化简,再求值:(1),其中x是不等式组的整数解26(12分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:甲
10、7.2 9.69.67.89.3 4 6.58.59.99.6乙5.89.79.76.89.96.98.26.78.69.7根据上面的数据,将下表补充完整:4.0x4.95.0x5.96.0x6.97.0x7.98.0x8.99.0x10.0甲101215乙_(说明:月销售额在8.0万元及以上可以获得奖金,7.07.9万元为良好,6.06.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如表所示:结论:人员平均数(万元)中位数(万元)众数(万元)甲8.28.99.6乙8.28.49.7(1)估计乙业务员能获得奖金的月份有_个;(2)可以推断出_业务员的销售业绩好,理由为
11、_(至少从两个不同的角度说明推断的合理性)27(12分)某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路甲勘测员在A处测得点O位于北偏东45,乙勘测员在B处测得点O位于南偏西73.7,测得AC=840m,BC=500m请求出点O到BC的距离参考数据:sin73.7,cos73.7,tan73.7参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】A、a+30是随机事件,故A错误;B、a30是必然事件,故B正确;C、3a0是不可能事件,故C错误;D、a30是随机事件,故D错误;故选B点睛:本题考查了随
12、机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=()1+()1=()1AC1+BC1=AB1ABC是等腰直角三角形ABC=45故选C考点:勾股定理3、C【解析】由科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝
13、对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:6400000=6.4106,故选C点睛:此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4、A【解析】根据对顶角相等求出CFB65,然后根据CDEB,判断出B115【详解】AFD65,CFB65,CDEB,B18065115,故选:A【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键5、C【解析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,
14、a-6=0,即a=6;当是一元二次方程时,有实数根,则0,求出a的取值范围,取最大整数即可【详解】当a-6=0,即a=6时,方程是-1x+6=0,解得x=;当a-60,即a6时,=(-1)2-4(a-6)6=201-24a0,解上式,得1.6,取最大整数,即a=1故选C6、B【解析】解:连接OB,四边形ABCO是平行四边形, OC=AB,又OA=OB=OC, OA=OB=AB, AOB为等边三角形, OFOC,OCAB, OFAB, BOF=AOF=30, 由圆周角定理得BAF=BOF=15故选:B7、D【解析】试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可解:A、不是中心对称
15、图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D考点:中心对称图形8、A【解析】根据题意可以列出相应的一元二次方程,从而可以解答本题【详解】解:由题意可得,1000(1+x)21000+440,故选:A【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.9、A【解析】正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答【详解】这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对故选:A【点睛】本题主要考查
16、了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键10、B【解析】利用对称性可知直线DG是正五边形ABCDE和正三角形ABG的对称轴,再利用正五边形、等边三角形的性质一一判断即可;【详解】五边形ABCDE是正五边形,ABG是等边三角形,直线DG是正五边形ABCDE和正三角形ABG的对称轴,DG垂直平分线段AB,BCD=BAE=EDC=108,BCA=BAC=36,DCA=72,CDE+DCA=180,DEAC,CDF=EDF=CFD=72,CDF是等腰三角形故丁、甲、丙正确故选B【点睛】本题考查正多边形的性质、等边三角形的性质、轴对称图形的性质等知识,解题的关键是灵
17、活运用所学知识解决问题,属于中考常考题型11、C【解析】根据旋转的性质和三角形内角和解答即可【详解】将ABC绕点C顺时针旋转90得到EDCDCE=ACB=20,BCD=ACE=90,AC=CE,ACD=90-20=70,点A,D,E在同一条直线上,ADC+EDC=180,EDC+E+DCE=180,ADC=E+20,ACE=90,AC=CEDAC+E=90,E=DAC=45在ADC中,ADC+DAC+DCA=180,即45+70+ADC=180,解得:ADC=65,故选C【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答12、C【解析】此题考查的是解直角三角形如图:AC=4,A
18、CBC,梯子的倾斜角(梯子与地面的夹角)不能60ABC60,最大角为60即梯子的长至少为米,故选C.二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】因为方程有实根,所以0,配方整理得(a+2b)2+(a1)20,再利用非负性求出a,b的值即可.【详解】方程有实根,0,即=4(1+a)24(3a2+4ab+4b2+2)0,化简得:2a2+4ab+4b22a+10,(a+2b)2+(a1)20,而(a+2b)2+(a1)20,a+2b=0,a1=0,解得a=1,b=,=.故答案为.14、1【解析】根据平行四边形定义得:DCAB,由两角对应相等可得:NQCMQA,DPCMPA,列
19、比例式可得CN的长【详解】四边形ABCD是平行四边形,DCAB,CNQ=AMQ,NCQ=MAQ,NQCMQA,同理得:DPCMPA,P、Q为对角线AC的三等分点,设CN=x,AM=1x,解得,x=1,CN=1,故答案为1【点睛】本题考查了平行四边形的性质和相似三角形的判定和性质,熟练掌握两角对应相等,两三角形相似的判定方法是关键15、【解析】根据抛物线的对称轴以及抛物线与x轴的一个交点,确定抛物线与x轴的另一个交点,再结合图象即可得出答案【详解】解:根据二次函数图象可知:抛物线的对称轴为直线,与x轴的一个交点为(-1,0),抛物线与x轴的另一个交点为(3,0),结合图象可知,当 y0 时,即x
20、轴上方的图象,对应的x 的取值范围是,故答案为: 【点睛】本题考查了二次函数与不等式的问题,解题的关键是通过图象确定抛物线与x轴的另一个交点,并熟悉二次函数与不等式的关系16、【解析】根据相似三角形的性质,先求出正A2B2C2,正A3B3C3的面积,依此类推AnBnCn的面积是,从而求出第8个正A8B8C8的面积【详解】正A1B1C1的面积是,而A2B2C2与A1B1C1相似,并且相似比是1:2,则面积的比是,则正A2B2C2的面积是;因而正A3B3C3与正A2B2C2的面积的比也是,面积是()2;依此类推AnBnCn与An-1Bn-1Cn-1的面积的比是,第n个三角形的面积是()n-1所以第
21、8个正A8B8C8的面积是()7=故答案为【点睛】本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键17、40【解析】首先证明PBBC,推出C30,可得PC2PA,求出PA即可解决问题【详解】解:在RtPAB中,APB30,PB2AB,由题意BC2AB,PBBC,CCPB,ABPC+CPB60,C30,PC2PA,PAABtan60,PC22040(km),故答案为40【点睛】本题考查解直角三角形的应用方向角问题,解题的关键是证明PBBC,推出C3018、1【解析】根据题意得x1+x2=2,x1x2=1,所以x1+x2x1x2=2(1)=1故答案为1三、解答题
22、:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)y=x2x,点D的坐标为(2,);(2)t=2;(3)M点的坐标为(2,0)或(6,0)【解析】(1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D的坐标;(2)连接AC,如图,先计算出AB=4,则判断平行四边形OCBA为菱形,再证明AOC和ACB都是等边三角形,接着证明OCMACN得到CM=CN,OCM=ACN,则判断CMN为等边三角形得到MN=CM,于是AMN的周长=OA+CM,由于CMOA时,CM的值最小,AMN的周长最小,从而得到t的值;(3)先利用勾股定理的逆定理证明OCD为直角三角
23、形,COD=90,设M(t,0),则E(t,t2-t),根据相似三角形的判定方法,当时,AMECOD,即|t-4|:4=|t2-t |:,当时,AMEDOC,即|t-4|:=|t2-t |:4,然后分别解绝对值方程可得到对应的M点的坐标【详解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,抛物线解析式为y=x2-x;y=x2-x =-2) 2-;点D的坐标为(2,-);(2)连接AC,如图,AB=4,而OA=4,平行四边形OCBA为菱形,OC=BC=4,C(2,2),AC=4,OC=OA=AC=AB=BC,AOC和ACB都是等边三角形,AOC=COB=OCA=60,而OC
24、=AC,OM=AN,OCMACN,CM=CN,OCM=ACN,OCM+ACM=60,ACN+ACM=60,CMN为等边三角形,MN=CM,AMN的周长=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,当CMOA时,CM的值最小,AMN的周长最小,此时OM=2,t=2;(3)C(2,2),D(2,-),CD=,OD=,OC=4,OD2+OC2=CD2,OCD为直角三角形,COD=90,设M(t,0),则E(t,t2-t),AME=COD,当时,AMECOD,即|t-4|:4=|t2-t |:,整理得|t2-t|=|t-4|,解方程t2-t =(t-4)得t1=4(舍去),t2=2,此时
25、M点坐标为(2,0);解方程t2-t =-(t-4)得t1=4(舍去),t2=-2(舍去);当时,AMEDOC,即|t-4|:=|t2-t |:4,整理得|t2-t |=|t-4|,解方程t2-t =t-4得t1=4(舍去),t2=6,此时M点坐标为(6,0);解方程t2-t =-(t-4)得t1=4(舍去),t2=-6(舍去);综上所述,M点的坐标为(2,0)或(6,0)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、平行四边形的性质和菱形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;熟练掌握相似三角形的判定方法;会运用分类讨论的思想
26、解决数学问题20、(1)抛物线l2的函数表达式;y=x24x1;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【解析】(1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CHPG交直线PG于点H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3y |,PG=|y |,AG=2,由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线
27、交点的横坐标分别为1,4,当1x4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;当4x1时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.【详解】(1)抛物线l1:y=x2+bx+3对称轴为x=1,x=1,b=2,抛物线l1的函数表达式为:y=x2+2x+3,当y=0时,x2+2x+3=0,解得:x1=3,x2=1,A(1,0),B(3,0),设抛物线l2的函数表达式;y=a(x1)(x+1),把D(0,1)代入得:1a=1,a=1,抛物线l2的函数表达式;y=x24x1;(2)作CHPG交直线PG于点H,设P点坐
28、标为(1,y),由(1)可得C点坐标为(0,3),CH=1,PH=|3y |,PG=|y |,AG=2,PC2=12+(3y)2=y26y+10,PA2= =y2+4,PC=PA,PA2=PC2,y26y+10=y2+4,解得y=1,P点坐标为(1,1);(3)由题意可设M(x,x24x1),MNy轴,N(x,x2+2x+3),令x2+2x+3=x24x1,可解得x=1或x=4,当1x4时,MN=(x2+2x+3)(x24x1)=2x2+6x+8=2(x)2+,显然14,当x=时,MN有最大值12.1;当4x1时,MN=(x24x1)(x2+2x+3)=2x26x8=2(x)2,显然当x时,M
29、N随x的增大而增大,当x=1时,MN有最大值,MN=2(1)2=12.综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【点睛】本题是二次函数与几何综合题, 主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.21、(1)y关于x的函数解析式为;(2)恒温系统设定恒温为20C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害【解析】分析:(1)应用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y=10即可详解:(1)设线段AB解析式为y=k1x+b(k0)线段AB过点(0,10),(2,14)代入得解得AB解析式为:y=2x+10(0
30、x5)B在线段AB上当x=5时,y=20B坐标为(5,20)线段BC的解析式为:y=20(5x10)设双曲线CD解析式为:y=(k20)C(10,20)k2=200双曲线CD解析式为:y=(10x24)y关于x的函数解析式为:(2)由(1)恒温系统设定恒温为20C(3)把y=10代入y=中,解得,x=2020-10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式解答时应注意临界点的应用22、(115)这组数据的中位数为15.116%;(116)这组数据的平均数是115 11609.116亿元;(15)116
31、016年社会消费品零售总额为115 15167(11515.116%)亿元【解析】试题分析:(115)根据中位数的定义把这组数据从小到大排列,找出最中间的数即可得出答案;(116)根据平均数的定义,求解即可;(15)根据增长率的中位数,可得116016年的销售额试题解析:解:(115)数据从小到大排列11516%,1165%,15116%,16115%,57%,则嘉兴市1160115116015年社会消费品零售总额增速这组数据的中位数是15116%;(116)嘉兴市近三年(1160116116015年)的社会消费品零售总额这组数据的平均数是:(616+76+5157+99+11500)5=11
32、575116(亿元);(15)从增速中位数分析,嘉兴市116016年社会消费品零售总额为1150(115+15116%)=16158116716(亿元)考点:115折线统计图;116条形统计图;15算术平均数;16中位数23、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励【解析】(1)设年平均增长率为x,根据“2015年投入资金(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和500万”列不等式求解即可【详解】(1)设该地投入异地安置资金的年平均增长率为x,
33、根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=2.25(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:10008400+(a1000)54005000000,解得:a1900,答:今年该地至少有1900户享受到优先搬迁租房奖励考点:一元二次方程的应用;一元一次不等式的应用.24、(1)证明过程见解析;(2)1.【解析】试题分析:(1)连接OD,由CD是O切线,得到ODC=90,根据AB为O的直径,得到ADB=90,等量代换得到BDC=ADO,根据等腰直角三角形的性质得到
34、ADO=A,即可得到结论;(2)根据垂直的定义得到E=ADB=90,根据平行线的性质得到DCE=BDC,根据相似三角形的性质得到,解方程即可得到结论试题解析:(1)连接OD, CD是O切线, ODC=90, 即ODB+BDC=90,AB为O的直径, ADB=90, 即ODB+ADO=90, BDC=ADO,OA=OD, ADO=A, BDC=A;(2)CEAE, E=ADB=90, DBEC, DCE=BDC, BDC=A, A=DCE,E=E, AECCED, , EC2=DEAE, 11=2(2+AD), AD=1考点:(1)切线的性质;(2)相似三角形的判定与性质25、x=3时,原式=【
35、解析】原式括号中两项通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,求出不等式组的解集,找出解集中的整数计算得出到x的值,代入计算即可求出值.【详解】解:原式=,解不等式组得,2x,x取整数,x=3,当x=3时,原式=【点睛】本题主要考查分式额化简求值及一元一次不等式组的整数解26、填表见解析;(1)6;(2)甲;甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多【解析】(1)月销售额在8.0万元及以上可以获得奖金,去销售额中找到乙大于8.0的个数即可解题,(2)根据中位数和平均数即可解题.【详解】解:如图,销售额数量x
36、人员4.0x4.95.0x5.96.0x6.97.0x7.98.0x8.99.0x10.0甲101215乙013024(1)估计乙业务员能获得奖金的月份有6个;(2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多【点睛】本题考查了统计的相关知识,众数,平均数的应用,属于简单题,将图表信息转换成有用信息是解题关键.27、点O到BC的距离为480m【解析】作OMBC于M,ONAC于N,设OM=x,根据矩形的性质用x表示出OM、MC,根据正切的定义用x表示出BM,根据题意列式计算即可【详解】作OMBC于M,ONAC于N,则四边形ONCM为矩形,ON=MC,OM=NC,设OM=x,则NC=x,AN=840x,在RtANO中,OAN=45,ON=AN=840x,则MC=ON=840x,在RtBOM中,BM=x,由题意得,840x+x=500,解得,x=480,答:点O到BC的距离为480m【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键