上海市六校联考2023届高三(最后冲刺)数学试卷含解析.doc

上传人:茅**** 文档编号:87840078 上传时间:2023-04-18 格式:DOC 页数:18 大小:1.74MB
返回 下载 相关 举报
上海市六校联考2023届高三(最后冲刺)数学试卷含解析.doc_第1页
第1页 / 共18页
上海市六校联考2023届高三(最后冲刺)数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《上海市六校联考2023届高三(最后冲刺)数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海市六校联考2023届高三(最后冲刺)数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

2、1如图,在中,点,分别为,的中点,若,且满足,则等于( )A2BCD2在的展开式中,含的项的系数是( )A74B121CD3若,则“”是“的展开式中项的系数为90”的( )A必要不充分条件B充分不必要条件C充要条件D既不充分也不必要条件4用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是( )A48B60C72D1205下列四个图象可能是函数图象的是( )ABCD6年某省将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他

3、因素影响,则甲同学同时选择历史和化学的概率为ABCD7设集合则( )ABCD8已知函数为奇函数,且,则( )A2B5C1D39近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;可以估计不足的大学生使用主要玩游戏;可以估计使用主要找人聊天的大学生超过总数的.其中正确的个数为( )ABCD10某公园新购进盆锦紫苏、盆虞美人、盆郁金香,盆盆栽,现将这盆盆栽摆成一排,要求郁金

4、香不在两边,任两盆锦紫苏不相邻的摆法共( )种ABCD11若复数满足,则(其中为虚数单位)的最大值为( )A1B2C3D412执行下面的程序框图,则输出的值为 ( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若实数满足不等式组则目标函数的最大值为_14设双曲线的左焦点为,过点且倾斜角为45的直线与双曲线的两条渐近线顺次交于,两点若,则的离心率为_15 “北斗三号”卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点远地点离地面的距离大约分别是,则“北斗三号”卫星运行轨道的离心率为_.16在中,角所对的边分别为,为的面积,若,则的形状为_,的大小为_三、解答题:共

5、70分。解答应写出文字说明、证明过程或演算步骤。17(12分)记为数列的前项和,N.(1)求;(2)令,证明数列是等比数列,并求其前项和.18(12分)如图,在四棱锥中,底面是平行四边形,平面,是棱上的一点,满足平面.()证明:;()设,若为棱上一点,使得直线与平面所成角的大小为30,求的值.19(12分)已知公比为正数的等比数列的前项和为,且,.(1)求数列的通项公式;(2)设,求数列的前项和.20(12分)若不等式在时恒成立,则的取值范围是_.21(12分)中,内角的对边分别为,.(1)求的大小;(2)若,且为的重心,且,求的面积.22(10分)为了解本学期学生参加公益劳动的情况,某校从初

6、高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】选取为基底,其他向量都用基底表示后进行运算【详解】由题意是的重心, ,故选:D【点睛】本题考查向量的数量积,解题关键是选取两个不共线向量作为基底,其

7、他向量都用基底表示参与运算,这样做目标明确,易于操作2、D【解析】根据,利用通项公式得到含的项为:,进而得到其系数,【详解】因为在,所以含的项为:,所以含的项的系数是的系数是,故选:D【点睛】本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题,3、B【解析】求得的二项展开式的通项为,令时,可得项的系数为90,即,求得,即可得出结果.【详解】若则二项展开式的通项为,令,即,则项的系数为,充分性成立;当的展开式中项的系数为90,则有,从而,必要性不成立.故选:B.【点睛】本题考查二项式定理、充分条件、必要条件及充要条件的判断知识,考查考生的分析问题的能力和计算能力,难度

8、较易.4、A【解析】对数字分类讨论,结合数字中有且仅有两个数字相邻,利用分类计数原理,即可得到结论【详解】数字出现在第位时,数字中相邻的数字出现在第位或者位,共有个数字出现在第位时,同理也有个数字出现在第位时,数字中相邻的数字出现在第位或者位,共有个故满足条件的不同的五位数的个数是个故选【点睛】本题主要考查了排列,组合及简单计数问题,解题的关键是对数字分类讨论,属于基础题。5、C【解析】首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解.【详解】的定义域为,其图象可由的图象沿轴向左平移1

9、个单位而得到,为奇函数,图象关于原点对称,的图象关于点成中心对称.可排除A、D项.当时,B项不正确.故选:C【点睛】本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.6、B【解析】甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B7、C【解析】直接求交集得到答案.【详解】集合,则.故选:.【点睛】本题考查了交集运算,属于简单题.8、B【解析】由函数为奇函数,则有,代入已知即可求得.【详解】.故选:.【点睛

10、】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.9、C【解析】根据利用主要听音乐的人数和使用主要看社区、新闻、资讯的人数作大小比较,可判断的正误;计算使用主要玩游戏的大学生所占的比例,可判断的正误;计算使用主要找人聊天的大学生所占的比例,可判断的正误.综合得出结论.【详解】使用主要听音乐的人数为,使用主要看社区、新闻、资讯的人数为,所以正确;使用主要玩游戏的人数为,而调查的总人数为,故超过的大学生使用主要玩游戏,所以错误;使用主要找人聊天的大学生人数为,因为,所以正确.故选:C.【点睛】本题考查统计中相关命题真假的判断,计算出相应的频数与频率是关键,考查数据处理能力,属于

11、基础题.10、B【解析】间接法求解,两盆锦紫苏不相邻,被另3盆隔开有,扣除郁金香在两边有,即可求出结论.【详解】使用插空法,先排盆虞美人、盆郁金香有种,然后将盆锦紫苏放入到4个位置中有种,根据分步乘法计数原理有,扣除郁金香在两边,排盆虞美人、盆郁金香有种,再将盆锦紫苏放入到3个位置中有,根据分步计数原理有,所以共有种.故选:B.【点睛】本题考查排列应用问题、分步乘法计数原理,不相邻问题插空法是解题的关键,属于中档题.11、B【解析】根据复数的几何意义可知复数对应的点在以原点为圆心,1为半径的圆上,再根据复数的几何意义即可确定,即可得的最大值.【详解】由知,复数对应的点在以原点为圆心,1为半径的

12、圆上,表示复数对应的点与点间的距离,又复数对应的点所在圆的圆心到的距离为1,所以.故选:B【点睛】本题考查了复数模的定义及其几何意义应用,属于基础题.12、D【解析】根据框图,模拟程序运行,即可求出答案.【详解】运行程序,结束循环,故输出,故选:D.【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、12【解析】画出约束条件的可行域,求出最优解,即可求解目标函数的最大值【详解】根据约束条件画出可行域,如下图,由,解得目标函数,当过点时,有最大值,且最大值为故答案为:【点睛】本题考查线性规划的简单应用,属于基础题14、【解析】

13、设直线的方程为,与联立得到A点坐标,由得,代入可得,即得解.【详解】由题意,直线的方程为,与联立得,由得,从而,即,从而离心率故答案为:【点睛】本题考查了双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.15、【解析】画出图形,结合椭圆的定义和题设条件,求得的值,即可求得椭圆的离心率,得到答案.【详解】如图所示,设椭圆的长半轴为,半焦距为,因为地球半径为R,若其近地点远地点离地面的距离大约分别是,可得,解得,所以椭圆的离心率为.故答案为:.【点睛】本题主要考查了椭圆的离心率的求解,其中解答中熟记椭圆的几何性质,列出方程组,求得的值是解答的关键,着重考查了推理与计算能力,

14、属于基础题.16、等腰三角形 【解析】根据正弦定理可得,即的形状为等腰三角形由余弦定理可得,即故答案为等腰三角形,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见详解,【解析】(1)根据,可得,然后作差,可得结果.(2)根据(1)的结论,用取代,得到新的式子,然后作差,可得结果,最后根据等比数列的前项和公式,可得结果.【详解】(1)由,则-可得:所以(2)由(1)可知:则-可得:则,且令,则,所以数列是首项为,公比为的等比数列所以【点睛】本题主要考查递推公式以及之间的关系的应用,考验观察能力以及分析能力,属中档题.18、()证明见解析()【解析】()由平

15、面,可得,又因为是的中点,即得证;()如图建立空间直角坐标系,设,计算平面的法向量,由直线与平面所成角的大小为30,列出等式,即得解.【详解】()如图,连接交于点,连接,则是平面与平面的交线,因为平面,故,又因为是的中点,所以是的中点,故.()由条件可知,所以,故以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,则,设,则,设平面的法向量为,则,即,故取因为直线与平面所成角的大小为30所以,即,解得,故此时.【点睛】本题考查了立体几何和空间向量综合,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.19、(1)(2)【解析】(1)判断公比不为1,运用等比数列的求和公式,解方程可得公比,

16、进而得到所求通项公式;(2)求得,运用数列的错位相减法求和,以及等比数列的求和公式,计算可得所求和.【详解】解:(1)设公比为正数的等比数列的前项和为,且,可得时,不成立;当时,即,解得(舍去),则;(2),前项和,两式相减可得,化简可得.【点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,考查方程思想和运算能力,属于中档题20、【解析】原不等式等价于在恒成立,令,求出在上的最小值后可得的取值范围.【详解】因为在时恒成立,故在恒成立.令,由可得.令,则为上的增函数,故.故.故答案为:.【点睛】本题考查含参数的不等式的恒成立,对于此类问题,优先考虑参变分离,把恒成立问题

17、转化为不含参数的新函数的最值问题,本题属于基础题.21、(1);(2)【解析】(1)利用正弦定理,转化为,分析运算即得解;(2)由为的重心,得到,平方可得解c,由面积公式即得解.【详解】(1)由,由正弦定理得C,即,又(2)由于为的重心故,解得或舍的面积为.【点睛】本题考查了正弦定理和余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.22、(1)(2)详见解析(3)初中生平均参加公益劳动时间较长【解析】(1)由图表直接利用随机事件的概率公式求解;(2)X的所有可能取值为0,1,2,3.由古典概型概率公式求概率,则分布列可求;(3)由图表直接判断结果.【详解】(1)100名学生中共有男生48名,其中共有20人参加公益劳动时间在,设男生中随机抽取一人,抽到的男生参加公益劳动时间在的事件为,那么;(2)的所有可能取值为0,1,2,3.;.随机变量的分布列为:(3)由图表可知,初中生平均参加公益劳动时间较长.【点睛】本小题主要考查古典概型的计算,考查超几何分布的分布列的计算,属于基础题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁