《2022-2023学年上海市十三校高三第二次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年上海市十三校高三第二次联考数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知关于的方程在区间上有两个根,且,则实数的取值范围是( )ABCD2年某省将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学
2、的概率为ABCD3过抛物线的焦点F作两条互相垂直的弦AB,CD,设P为抛物线上的一动点,若,则的最小值是( )A1B2C3D44易系辞上有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为ABCD5是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是( )ABCD6已知定义在上的可导函数满足,若是奇函数,则不等式的解集是( )ABCD7已知定义在上函数的图象关于原点对称,且,若,则( )A0B1C673D6748己知全集
3、为实数集R,集合A=x|x2 +2x-80,B=x|log2x1,n22n,则p为( )ABCD11复数,若复数在复平面内对应的点关于虚轴对称,则等于( )ABCD12已知集合,则的子集共有( )A个B个C个D个二、填空题:本题共4小题,每小题5分,共20分。13设O为坐标原点, ,若点B(x,y)满足,则的最大值是_14已知数列的前项和为,且成等差数列,数列的前项和为,则满足的最小正整数的值为_.15若,则_.16已知双曲线C:()的左、右焦点为,为双曲线C上一点,且,若线段与双曲线C交于另一点A,则的面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知
4、.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.18(12分)设,(1)求的单调区间;(2)设恒成立,求实数的取值范围.19(12分)已知.(1)若曲线在点处的切线也与曲线相切,求实数的值;(2)试讨论函数零点的个数.20(12分)已知集合,.(1)若,则;(2)若,求实数的取值范围.21(12分)在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.
5、六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:卫生习惯状况类垃圾处理状况类体育锻炼状况类心理健康状况类膳食合理状况类作息规律状况类有效答卷份数380550330410400430习惯良好频率0.60.90.80.70.650.6假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.(1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中习惯良好者的概率;(2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理
6、状况类”三类习惯方面,至少具备两类良好习惯的概率;(3)利用上述六类习惯调查的排序,用“”表示任选一位第k类受访者是习惯良好者,“”表示任选一位第k类受访者不是习惯良好者().写出方差,的大小关系.22(10分)已知函数(1)当时,证明,在恒成立;(2)若在处取得极大值,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.【详解】由题化简得,作出的图象,又由易知故选:C.【点睛】本
7、题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.2、B【解析】甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B3、C【解析】设直线AB的方程为,代入得:,由根与系数的关系得,从而得到,同理可得,再利用求得的值,当Q,P,M三点共线时,即可得答案.【详解】根据题意,可知抛物线的焦点为,则直线AB的斜率存在且不为0,设直线AB的方程为,代入得:.由根与系数的关系得,所以.又直线CD的方程为,同理,所以,所以.故.过点P作PM垂直于准线
8、,M为垂足,则由抛物线的定义可得.所以,当Q,P,M三点共线时,等号成立.故选:C.【点睛】本题考查直线与抛物线的位置关系、焦半径公式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意取最值的条件.4、A【解析】阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.5、C【解析】求出点关于直线的对称点的坐标,进而可得出圆关于直线的对称圆的方程,利
9、用二次函数的基本性质求出的最小值,由此可得出,即可得解.【详解】如下图所示:设点关于直线的对称点为点,则,整理得,解得,即点,所以,圆关于直线的对称圆的方程为,设点,则,当时,取最小值,因此,.故选:C.【点睛】本题考查抛物线上一点到圆上一点最值的计算,同时也考查了两圆关于直线对称性的应用,考查计算能力,属于中等题.6、A【解析】构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.【详解】构造函数,依题意可知,所以在上递增.由于是奇函数,所以当时,所以,所以.由得,所以,故不等式的解集为.故选:A【点睛】本小题主要考查构造函数法解不等式,考查利用导数研
10、究函数的单调性,考查化归与转化的数学思想方法,属于中档题.7、B【解析】由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.【详解】因为为奇函数,故;因为,故,可知函数的周期为3;在中,令,故,故函数在一个周期内的函数值和为0,故.故选:B.【点睛】本题考查函数奇偶性与周期性综合问题. 其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解8、D【解析】求解一元二次不等式化简A,求解对数不等式化简B,然后利用补集与交集的运算得答案.【详解】解:由
11、x2 +2x-80,得x-4或x2,A=x|x2 +2x-80x| x-4或x2,由log2x1,x0,得0x2,B=x|log2x1 x |0x2,则,.故选:D.【点睛】本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题.9、D【解析】根据空间向量的线性运算,用作基底表示即可得解.【详解】根据空间向量的线性运算可知因为,,则即,故选:D.【点睛】本题考查了空间向量的线性运算,用基底表示向量,属于基础题.10、C【解析】根据命题的否定,可以写出:,所以选C.11、A【解析】先通过复数在复平面内对应的点关于虚轴对称,得到,再利用复数的除法求解.【详解】因为复数在复平
12、面内对应的点关于虚轴对称,且复数,所以所以故选:A【点睛】本题主要考查复数的基本运算和几何意义,属于基础题.12、B【解析】根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.【详解】由题可知:,当时,当时,当时,当时,所以集合则所以的子集共有故选:B【点睛】本题考查集合的运算以及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】 ,可行域如图,直线 与圆 相切时取最大值,由 14、1【解析】本题先根据公式初步找到数列的通项公式,然后根
13、据等差中项的性质可解得的值,即可确定数列的通项公式,代入数列的表达式计算出数列的通项公式,然后运用裂项相消法计算出前项和,再代入不等式进行计算可得最小正整数的值【详解】由题意,当时,当时,则,成等差数列,即,解得,即,即,即满足的最小正整数的值为1故答案为:1【点睛】本题主要考查数列求通项公式、裂项相消法求前项和,考查了转化思想、方程思想,考查了不等式的计算、逻辑思维能力和数学运算能力15、【解析】由, 得出,根据两角和与差的正弦公式和余弦公式化简,再利用齐次式即可求出结果.【详解】因为, 所以,所以.故答案为:.【点睛】本题考查三角函数化简求值,利用二倍角正切公式、两角和与差的正弦公式和余弦
14、公式,以及运用齐次式求值,属于对公式的考查以及对计算能力的考查.16、【解析】由已知得即,,可解得,由在双曲线C上,代入即可求得双曲线方程,然后求得直线的方程与双曲线方程联立求得点A坐标,借助,即可解得所求.【详解】由已知得,又,所以,解得或,由在双曲线C上,所以或,所以或(舍去),因此双曲线C的方程为.又,所以线段的方程为,与双曲线C的方程联立消去x整理得,所以,所以点A坐标为,所以.【点睛】本题主要考查直线与双曲线的位置关系,考查双曲线方程的求解,考查求三角形面积,考查学生的计算能力,难度较难.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】分析:
15、(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.详解:(1)当时,即故不等式的解集为(2)当时成立等价于当时成立若,则当时;若,的解集为,所以,故综上,的取值范围为点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分
16、类讨论,求得结果.18、(1)单调递增区间为,单调递减区间为;(2)【解析】(1),令,解不等式即可;(2),令得,即,且的最小值为,令,结合即可解决.【详解】(1),当时,递增,当时,递减.故的单调递增区间为,单调递减区间为.(2),设的根为,即有可得,当时,递减,当时,递增.,所以,当;当时,设,递增,所以.综上,.【点睛】本题考查了利用导数研究函数单调性以及函数恒成立问题,这里要强调一点,处理恒成立问题时,通常是构造函数,将问题转化为函数的极值或最值来处理.19、(1)(2)答案不唯一具体见解析【解析】(1)利用导数的几何意义,设切点的坐标,用不同的方式求出两种切线方程,但两条切线本质为
17、同一条,从而得到方程组,再构造函数研究其最大值,进而求得;(2)对函数进行求导后得,对分三种情况进行一级讨论,即,结合函数图象的单调性及零点存在定理,可得函数零点情况.【详解】解: (1)曲线在点处的切线方程为,即.令切线与曲线相切于点,则切线方程为,令,则,记,于是,在上单调递增,在上单调递减,于是,.(2),当时,恒成立,在上单调递增,且,函数在上有且仅有一个零点;当时,在R上没有零点;当时,令,则,即函数的增区间是,同理,减区间是,.)若,则,在上没有零点;)若,则有且仅有一个零点;)若,则.,令,则,当时,单调递增,.又,在R上恰有两个零点,综上所述,当时,函数没有零点;当或时,函数恰
18、有一个零点;当时,恰有两个零点.【点睛】本题考查导数的几何意义、切线方程、零点等知识,求解切线有关问题时,一定要明确切点坐标.以导数为工具,研究函数的图象特征及性质,从而得到函数的零点个数,此时如果用到零点存在定理,必需说明在区间内单调且找到两个端点值的函数值相乘小于0,才算完整的解法.20、(1);(2)【解析】(1)将代入可得集合B,解对数不等式可得集合A,由并集运算即可得解.(2)由可知B为A的子集,即;当符合题意,当B不为空集时,由不等式关系即可求得的取值范围.【详解】(1)若,则,依题意, 故;(2)因为,故;若,即时,符合题意;若,即时,解得;综上所述,实数的取值范围为.【点睛】本
19、题考查了集合的并集运算,由集合的包含关系求参数的取值范围,注意讨论集合是否为空集的情况,属于基础题.21、(1)(2)(3)【解析】(1)设“选取的试卷的调查结果是膳食合理状况类中习惯良好者“的事件为,根据古典概型求出即可;(2)设该区“卫生习惯状况良好者“,“体育锻炼状况良好者“、“膳食合理状况良好者”事件分别为,设事件为“该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯“,则(E),求出即可;(3)根据题意,写出即可【详解】(1)设“选取的试卷的调查结果是膳食合理状况类中习惯良好者“的事件为,有效问卷共有(份,其中受访者中膳食合理习惯良好的人数是
20、人,故(A);(2)设该区“卫生习惯状况良好者“,“体育锻炼状况良好者“、“膳食合理状况良好者”事件分别为,根据题意,可知(A),(B),(C),设事件为“该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯“则.所以该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯至少具备2个良好习惯的概率为0.766.(3)【点睛】本题考查了古典概型求概率,独立性事件,互斥性事件求概率等,考查运算能力和事件应用能力,中档题22、(1)证明见解析(2)【解析】(1)根据,求导,令,用导数法求其最小值.设研究在处左正右负,求导,分 ,三种情况讨论求解.【详解】(1)因为,所以,令,则,所以是的增函数,故,即.因为所以,当时,所以函数在上单调递增.若,则若,则所以函数的单调递增区间是,单调递减区间是,所以在处取得极小值,不符合题意,当时,所以函数在上单调递减.若,则若,则所以的单调递减区间是,单调递增区间是,所以在处取得极大值,符合题意.当时,使得,即,但当时,即所以函数在上单调递减,所以,即函数)在上单调递减,不符合题意综上所述,的取值范围是【点睛】本题主要考查导数与函数的单调性和极值,还考查了转化化归的思想和运算求解的能力,属于难题.