《2023届浙江省绍兴市嵊州市中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届浙江省绍兴市嵊州市中考数学考前最后一卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,从圆外一点引圆的两条切线,切点分别为,如果, ,那么弦AB的长是( )ABCD2若a+b=3,则ab等于( )A2B1C2D13已知O及O外一点P,过点P作出O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:连接OP,作OP的垂直平分线l,交OP于点A;以点A为圆心、OA为半径画弧、交O于点M;作直线PM,则直线PM即为所求(如图1)乙:让直角三角板的一条直角边始终经过点P;调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在O上,记这时直角顶点的
3、位置为点M;作直线PM,则直线PM即为所求(如图2)对于两人的作业,下列说法正确的是( )A甲乙都对B甲乙都不对C甲对,乙不对D甲不对,已对4已知:如图,AD是ABC的角平分线,且AB:AC=3:2,则ABD与ACD的面积之比为()A3:2B9:4C2:3D4:95如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是ABCD6一个几何体的三视图如图所示,该几何体是A直三棱柱B长方体C圆锥D立方体7如图所示的几何体的主视图正确的是( )ABCD8小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25 ,小
4、宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克若设早上葡萄的价格是 x 元/千克,则可列方程( )ABCD9小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A50,50B50,30C80,50D30,5010小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有( )种A1B2C3D411如图所示的图形为四位同学画的数轴,其中正确的是( )ABCD12-4的相反数是( )ABC4D-4二、填空题:(本大题共6个小
5、题,每小题4分,共24分)13如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是 14如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边PAB,使AB落在x轴上,则POB的面积为_15对于实数x,我们规定x表示不大于x的最大整数,例如1.1=1,3=3,2.2=3,若=5,则x的取值范围是_16如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将EBF沿EF所在直线折叠得到EBF,连接BD,则BD的最小值是_17在直角坐标系中,坐标轴上到点P(3,4)的距离等于5的点的坐标是18现有三张
6、分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线 图象上的概率为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在平行四边形ABCD中,DBAB,点E是BC边的中点,过点E作EFCD,垂足为F,交AB的延长线于点G(1)求证:四边形BDFG是矩形;(2)若AE平分BAD,求tanBAE的值20(6分)如图,在锐角ABC中,小明进行了如下的尺规作图:分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分
7、别相交于点P、Q;作直线PQ分别交边AB、BC于点E、D小明所求作的直线DE是线段AB的 ;联结AD,AD7,sinDAC,BC9,求AC的长21(6分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E求证:AFECDF;若AB=4,BC=8,求图中阴影部分的面积22(8分)先化简,再求值:2(m1)2+3(2m+1),其中m是方程2x2+2x1=0的根23(8分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C甲、乙两人离景点A的路程s(米)关于时间t(分
8、钟)的函数图象如图所示甲的速度是_米/分钟;当20t30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?24(10分)先化简,后求值:a2a4a8a2+(a3)2,其中a=125(10分)计算:(2)0+|1|+2cos3026(12分)先化简,再求值:,再从的范围内选取一个你最喜欢的值代入,求值27(12分)如图,在ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,求证:AF=DC;若ABAC,试判断四边形ADCF的形状,并证明你的
9、结论参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】先利用切线长定理得到,再利用可判断为等边三角形,然后根据等边三角形的性质求解【详解】解:,PB为的切线,为等边三角形,故选C【点睛】本题考查切线长定理,掌握切线长定理是解题的关键2、B【解析】a+b=3,(a+b)2=9a2+2ab+b2=9a2+b2=77+2ab=9,7+2ab=9ab=1故选B考点:完全平方公式;整体代入3、A【解析】(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到O=AMO,AMP=MPA,所以OMA+AMP
10、=O+MPA=90,得出MP是O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,所以OMP=90,得到MP是O的切线【详解】证明:(1)如图1,连接OM,OA连接OP,作OP的垂直平分线l,交OP于点A,OA=AP以点A为圆心、OA为半径画弧、交O于点M;OA=MA=AP,O=AMO,AMP=MPA,OMA+AMP=O+MPA=90,OMMP,MP是O的切线;(1)如图1直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,OMP=90,MP是O的切线故两位同学的作法都正确故选A【点睛】本题考查了复杂的作图,重点是运用切线
11、的判定来说明作法的正确性4、A【解析】试题解析:过点D作DEAB于E,DFAC于F.AD为BAC的平分线,DE=DF,又AB:AC=3:2, 故选A.点睛:角平分线上的点到角两边的距离相等.5、D【解析】【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案【详解】由二次函数的图象可知,当时,的图象经过二、三、四象限,观察可得D选项的图象符合,故选D【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.6、A【解析】根据三视图的形状可判断几何体的形状【详解】观察三视图可知,该几何
12、体是直三棱柱故选A本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键7、D【解析】主视图是从前向后看,即可得图像.【详解】主视图是一个矩形和一个三角形构成.故选D.8、B【解析】分析:根据数量=,可知第一次买了千克,第二次买了,根据第二次恰好比第一次多买了 0.5 千克列方程即可.详解:设早上葡萄的价格是 x 元/千克,由题意得,.故选B.点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系.9、A【解析】分析:根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解详解:由
13、扇形统计图可知,购买课外书花费为100元的同学有:2010%=2(人),购买课外书花费为80元的同学有:2025%=5(人),购买课外书花费为50元的同学有:2040%=8(人),购买课外书花费为30元的同学有:2020%=4(人),购买课外书花费为20元的同学有:205%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)2=50(元) 故选A点睛:本题考查了扇形统计图,平均数,中位数与众数,注意掌握通过扇形统计图可
14、以很清楚地表示出各部分数量同总数之间的关系10、C【解析】分析:先根据题意列出二元一次方程,再根据x,y都是非负整数可求得x,y的值详解:解:设2元的共有x张,5元的共有y张,由题意,2x+5y=27x=(27-5y)x,y是非负整数,或或,付款的方式共有3种故选C.点睛:本题考查二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求解11、D【解析】根据数轴三要素:原点、正方向、单位长度进行判断.【详解】A选项图中无原点,故错误;B选项图中单位长度不统一,故错误;C选项图中无正方向,故错误;D选项图形包含数轴三要素,故正确;故选D.
15、【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.12、C【解析】根据相反数的定义即可求解.【详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.二、填空题:(本大题共6个小题,每小题4分,共24分)13、4n1【解析】由图可知:第一个图案有阴影小三角形1个,第二图案有阴影小三角形1+4=6个,第三个图案有阴影小三角形1+8=11个,那么第n个就有阴影小三角形1+4(n1)=4n1个14、 【解析】如图,过点P作PHOB于点H,点P(m,m)是反比例函数y=在第一象限内的图象上的一个点,9=m2,且m0,解得,m=3.PH=OH=3.PAB是等边三角
16、形,PAH=60.根据锐角三角函数,得AH=.OB=3+SPOB=OBPH=.15、11x1【解析】根据对于实数x我们规定x不大于x最大整数,可得答案【详解】由=5,得: ,解得11x1,故答案是:11x1【点睛】考查了解一元一次不等式组,利用x不大于x最大整数得出不等式组是解题关键16、11【解析】如图所示点B在以E为圆心EA为半径的圆上运动,当D、B、E共线时时,此时BD的值最小,根据勾股定理求出DE,根据折叠的性质可知BE=BE=1,即可求出BD【详解】如图所示点B在以E为圆心EA为半径的圆上运动,当D、B、E共线时时,此时BD的值最小,根据折叠的性质,EBFEBF,EBBF,EB=EB
17、,E是AB边的中点,AB=4,AE=EB=1,AD=6,DE=,BD=11【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用;确定点B在何位置时,BD的值最小是解题的关键17、(0,0)或(0,8)或(6,0)【解析】由P(3,4)可知,P到原点距离为5,而以P点为圆心,5为半径画圆,圆经过原点分别与x轴、y轴交于另外一点,共有三个【详解】解:P(3,4)到原点距离为5,而以P点为圆心,5为半径画圆,圆经过原点且分别交x轴、y轴于另外两点(如图所示),故坐标轴上到P点距离等于5的点有三个:(0,0)或(0,8)或(6,0)故答案是:(0,0)或(0,8)或(6,0
18、)18、【解析】根据题意列出图表,即可表示(a,b)所有可能出现的结果,根据一次函数的性质求出在图象上的点,即可得出答案【详解】画树状图得:共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线 图象上的只有(3,2),点(a,b)在图象上的概率为【点睛】本题考查了用列表法或树状图法求概率注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;(2)【解析】(1
19、)根据矩形的判定证明即可;(2)根据平行四边形的性质和等边三角形的性质解答即可【详解】证明:(1)BDAB,EFCD,ABD90,EFD90,根据题意,在ABCD中,ABCD,BDCABD90,BDGF,四边形BDFG为平行四边形,BDC90,四边形BDFG为矩形;(2)AE平分BAD,BAEDAE,ADBC,BEADAE,BAEBEA,BABE,在RtBCD中,点E为BC边的中点,BEEDEC,在ABCD中,ABCD,ECD为等边三角形,C60,【点睛】本题考查了矩形的判定、等边三角形的判定和性质,根据平行四边形的性质和等边三角形的性质解答是解题关键20、(1)线段AB的垂直平分线(或中垂线
20、);(2)AC5【解析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得ADBD,得到CD2,又因为已知sinDAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DFAC,垂足为点F,如图,DE是线段AB的垂直平分线,ADBD7CDBCBD2,在RtADF中,sinDAC,DF1,在RtADF中,AF,在RtCDF中,CF,ACAF+CF【点睛】本题考查了垂
21、直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.21、(1)证明见解析;(2)1【解析】试题分析:(1)根据矩形的性质得到AB=CD,B=D=90,根据折叠的性质得到E=B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论试题解析:(1)四边形ABCD是矩形,AB=CD,B=D=90,将矩形ABCD沿对角线AC翻折,点B落在点E处,E=B,AB=AE,AE=CD,E=D,在AEF与CDF中,E=D,AFE=CFD
22、,AE=CD,AEFCDF;(2)AB=4,BC=8,CE=AD=8,AE=CD=AB=4,AEFCDF,AF=CF,EF=DF,DF2+CD2=CF2,即DF2+42=(8DF)2,DF=3,EF=3,图中阴影部分的面积=SACESAEF=4843=1点睛:本题考查了翻折变换折叠的性质,熟练掌握折叠的性质是解题的关键22、2m2+2m+5;1;【解析】先利用完全平方公式化简,再去括号合并得到最简结果,把已知等式变形后代入值计算即可【详解】解:原式=2(m22m+1)+1m+3,=2m24m+2+1m+3=2m2+2m+5,m是方程2x2+2x1=0的根,2m2+2m1=0,即2m2+2m=1
23、,原式=2m2+2m+5=1【点睛】此题考查了整式的化简求值以及方程的解,利用整体代换思想可使运算更简单.23、(1)60;(2)s10t6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B步行到景点C的速度是2米/分钟【解析】(1)观察图像得出路程和时间,即可解决问题(2)利用待定系数法求一次函数解析式即可;(3)分两种情况讨论即可;(4)设乙从B步行到C的速度是x米/分钟,根据当甲到达景点C时,乙与景点C的路程为360米,所用的时间为(90-60)分钟,列方程求解即可【详解】(1)甲的速度为60米/分钟(2)当20t 1时,设s=mtn,由题意得:,解得:,所以s=10t
24、6000;(3)当20t 1时,60t=10t6000,解得:t=25,2520=5;当1t 60时,60t=100,解得:t=50,5020=1综上所述:乙出发5分钟和1分钟时与甲在途中相遇(4)设乙从B步行到C的速度是x米/分钟,由题意得:5400100(9060) x=360解得:x=2答:乙从景点B步行到景点C的速度是2米/分钟【点睛】本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型24、1【解析】先进行同底数幂的乘除以及幂的乘方运算,再合并同类项得到化简后的式子,将a的值代入化简后的式子计算即可.
25、【详解】原式=a6a6+a6=a6,当a=1时,原式=1【点睛】本题主要考查同底数幂的乘除以及幂的乘方运算法则.25、【解析】(1)原式利用二次根式的性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值进行化简即可得到结果【详解】原式,【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键26、原式=,把x=2代入的原式=1. 【解析】试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.试题解析:原式= = 当x=2时,原式=127、(1)见解析(2)见解析【解析】(1)根据AAS证AFEDBE,推出AF=BD,即可得出答案(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可【详解】解:(1)证明:AFBC, AFE=DBEE是AD的中点,AD是BC边上的中线,AE=DE,BD=CD在AFE和DBE中,AFE=DBE,FEA=BED, AE=DE,AFEDBE(AAS)AF=BDAF=DC(2)四边形ADCF是菱形,证明如下:AFBC,AF=DC,四边形ADCF是平行四边形ACAB,AD是斜边BC的中线,AD=DC平行四边形ADCF是菱形