2023届浙江省宁波市国际校中考数学考前最后一卷含解析.doc

上传人:lil****205 文档编号:87839273 上传时间:2023-04-18 格式:DOC 页数:18 大小:745KB
返回 下载 相关 举报
2023届浙江省宁波市国际校中考数学考前最后一卷含解析.doc_第1页
第1页 / 共18页
2023届浙江省宁波市国际校中考数学考前最后一卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2023届浙江省宁波市国际校中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届浙江省宁波市国际校中考数学考前最后一卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1若设道路的宽为xm,则下面所列方程正确的是()A(311x)(10x)=570B31x+110x=3110570C(31x)

2、(10x)=3110570D31x+110x1x1=5702(2016四川省甘孜州)如图,在55的正方形网格中,每个小正方形的边长都为1,若将AOB绕点O顺时针旋转90得到AOB,则A点运动的路径的长为()AB2C4D83下列运算正确的是( )A=x5BC=D3+2 4如图,ABC中,ADBC,AB=AC,BAD=30,且AD=AE,则EDC等于()A10B12.5C15D205若分式有意义,则a的取值范围为( )Aa4Ba4Ca4Da46如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()ABCD72017年新设了雄安新区,周边经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长

3、到305.5亿元其中305.5亿用科学记数法表示为( )A305.5104 B3.055102 C3.0551010 D3.05510118如图,ABC中,AB=AC=15,AD平分BAC,点E为AC的中点,连接DE,若CDE的周长为21,则BC的长为( )A16B14C12D69小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25 ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克若设早上葡萄的价格是 x 元/千克,则可列方程( )ABCD10函数y=x2+bx+c与y=x的图象如图所示,有以下结论:b24c1;

4、b+c+1=1;3b+c+6=1;当1x3时,x2+(b1)x+c1其中正确的个数为A1B2C3D4二、填空题(本大题共6个小题,每小题3分,共18分)11为了节约用水,某市改进居民用水设施,在2017年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_12在ABC中,点D在边BC上,且BD:DC=1:2,如果设=, =,那么等于_(结果用、的线性组合表示)13已知代数式2xy的值是,则代数式6x+3y1的值是_14在RtABC中,ACB=90,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为_15已知一个菱形的

5、边长为5,其中一条对角线长为8,则这个菱形的面积为_16一个圆的半径为2,弦长是2,求这条弦所对的圆周角是_三、解答题(共8题,共72分)17(8分)如图,在梯形ABCD中,ADBC,对角线 AC、BD交于点 M,点E在边BC上,且DAE=DCB,联结AE,AE与BD交于点F(1)求证:;(2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.18(8分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH(1)求证:AEHCGF;(2)在点E、F、G、H运动过程中,判断直线EG是否经过某一个定点,如果是,请证明你的结论;如果不

6、是,请说明理由19(8分)如图,在ABC中,ABC=90,BD为AC边上的中线(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CEBC于点C,交BD的延长线于点E,连接AE;(2)求证:四边形ABCE是矩形20(8分)如图,在RtABC中,过点C的直线MNAB,D为AB边上一点,过点D作DEBC,交直线MN于E,垂足为F,连接CD、BE.求证:CE=AD;当D在AB中点时,四边形BECD是什么特殊四边形?说明理由;若D为AB中点,则当=_时,四边形BECD是正方形.21(8分)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定

7、销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1350元,那么销售单价是多少?22(10分)已知,抛物线yx2x+与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F(1)A点坐标为 ;B点坐标为 ;F点坐标为 ;(2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BMFM,在直线AC下方的抛物线上是否存在点P,使SACP4,若存在,请求出点P的坐标,若不存在,请说明理由;(3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,

8、直线AD、AE分别交y轴于M、N两点,若OMON,求证:直线DE必经过一定点23(12分)如图,ABCD的对角线AC,BD相交于点OE,F是AC上的两点,并且AE=CF,连接DE,BF(1)求证:DOEBOF;(2)若BD=EF,连接DE,BF判断四边形EBFD的形状,并说明理由24由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投

9、入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入投入总成本)参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(311x)(10x)=570,故选A.2、B【解析】试题分析:每个小正方形的边长都为1,OA=4,将AOB绕点O顺时针旋转90得到AOB,AOA=90,A点运动的路径的长为:=2故选B考点:弧长的计算;旋转的性质3、B【解析】根据幂的运算法则及整式的加减运算即可判断.【详解】A. =

10、x6,故错误;B. ,正确;C. =,故错误; D. 3+2 不能合并,故错误,故选B.【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.4、C【解析】试题分析:根据三角形的三线合一可求得DAC及ADE的度数,根据EDC=90-ADE即可得到答案ABC中,ADBC,AB=AC,BAD=30,DAC=BAD=30,AD=AE(已知),ADE=75EDC=90-ADE=15故选C考点:本题主要考查了等腰三角形的性质,三角形内角和定理点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合5、A【解析】分式有意义时,分母a-40【详解】依题意得:a40,

11、解得a4.故选:A【点睛】此题考查分式有意义的条件,难度不大6、A【解析】试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形故选A【考点】简单组合体的三视图7、C【解析】解:305.5亿=3.0551故选C8、C【解析】先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为ABC中位线,故ABC的周长是CDE的周长的两倍,由此可求出BC的值.【详解】AB=AC=15,AD平分BAC,D为BC中点,点E为AC的中点,DE为ABC中位线,DE=AB,ABC的周长是CDE的周长的两倍,由此可求出BC的值.AB+AC+BC=42,BC=42-15-15=12,故选C.【点睛】

12、此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.9、B【解析】分析:根据数量=,可知第一次买了千克,第二次买了,根据第二次恰好比第一次多买了 0.5 千克列方程即可.详解:设早上葡萄的价格是 x 元/千克,由题意得,.故选B.点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系.10、B【解析】分析:函数y=x2+bx+c与x轴无交点,b24c1;故错误。当x=1时,y=1+b+c=1,故错误。当x=3时,y=9+3b+c=3,3b+c+6=1。故正确。当1x3时,二次函数值小于一次函数值,x2+bx+cx,x2+(b1)x+c1。故正

13、确。综上所述,正确的结论有两个,故选B。二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题解析:305000用科学记数法表示为:故答案为12、【解析】根据三角形法则求出即可解决问题;【详解】如图,=, =,=+=-,BD=BC,=故答案为【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型13、【解析】由题意可知:2x-y=,然后等式两边同时乘以-3得到-6x+3y=-,然后代入计算即可【详解】2x-y=,-6x+3y=-原式=-1=-故答案为-【点睛】本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-是解题的关键14、1【解析】作AB的

14、中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后在CEM中根据三边关系即可求解【详解】作AB的中点E,连接EM、CE,在直角ABC中,AB=10,E是直角ABC斜边AB上的中点,CE=AB=5,M是BD的中点,E是AB的中点,ME=AD=2,在CEM中,5-2CM5+2,即3CM1,最大值为1,故答案为1【点睛】本题考查了点与圆的位置关系、三角形的中位线定理的知识,要结合勾股定理、直角三角形斜边上的中线等于斜边的一半解答15、1【解析】试题解析:如图,菱形ABCD中,BD=8,AB=5,ACBD,OB=BD=4,OA=3,AC=2O

15、A=6,这个菱形的面积为:ACBD=68=116、60或120【解析】首先根据题意画出图形,过点O作ODAB于点D, 通过垂径定理, 即可推出AOD的度数, 求得AOB的度数, 然后根据圆周角定理,即可推出AMB和ANB的度数.【详解】解:如图:连接OA,过点O作ODAB 于点D,OA=2,AB=,AD=BD=,AD:OA=:2,AOD=, AOB=,AMB=,ANB=.故答案为: 或.【点睛】本题主要考查垂径定理与圆周角定理,注意弦所对的圆周角有两个,他们互为补角.三、解答题(共8题,共72分)17、(1) 证明见解析;(2) 证明见解析.【解析】分析:(1)由ADBC可得出DAE=AEB,

16、结合DCB=DAE可得出DCB=AEB,进而可得出AEDC、AMFCMD,根据相似三角形的性质可得出=,根据ADBC,可得出AMDCMB,根据相似三角形的性质可得出=,进而可得出=,即MD2=MFMB; (2)设FM=a,则BF=3a,BM=4a由(1)的结论可求出MD的长度,代入DF=DM+MF可得出DF的长度,由ADBC,可得出AFDEFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形详解:(1)ADBC,DAE=AEBDCB=DAE,DCB=AEB,AEDC,AMFCMD,= ADBC,AMDCMB,=,即MD2=MF

17、MB (2)设FM=a,则BF=3a,BM=4a 由MD2=MFMB,得:MD2=a4a,MD=2a,DF=BF=3a ADBC,AFDEFB,=1,AF=EF,四边形ABED是平行四边形 点睛:本题考查了相似三角形的判定与性质、平行四边形的判定、平行线的性质以及矩形,解题的关键是:(1)利用相似三角形的性质找出=、=;(2)牢记“对角线互相平分的四边形是平行四边形”18、(1)见解析;(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由见解析.【解析】分析:(1)由正方形的性质得出A=C=90,AB=BC=CD=DA,由AE=BF=CG=DH证出AH=CF,由SAS证

18、明AEHCGF即可求解;(2)连接AC、EG,交点为O;先证明AOECOG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的中心详解:(1)证明:四边形ABCD是正方形,A=C=90,AB=BC=CD=DA,AE=BF=CG=DH,AH=CF,在AEH与CGF中,AH=CF,A=C,AE=CG,AEHCGF(SAS);(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:连接AC、EG,交点为O;如图所示:四边形ABCD是正方形,ABCD,OAE=OCG,在AOE和COG中,OAE=OCG,AOE=COG,AE=CG,AOECOG(AAS),OA=OC

19、,OE=OG,即O为AC的中点,正方形的对角线互相平分,O为对角线AC、BD的交点,即O为正方形的中心点睛:考查了正方形的性质与判定、全等三角形的判定与性质等知识;本题综合性强,有一定难度,特别是(2)中,需要通过作辅助线证明三角形全等才能得出结果19、 (1)见解析;(2)见解析.【解析】(1)根据题意作图即可;(2)先根据BD为AC边上的中线,AD=DC,再证明ABDCED(AAS)得AB=EC,已知ABC=90即可得四边形ABCE是矩形【详解】(1)解:如图所示:E点即为所求;(2)证明:CEBC,BCE=90,ABC=90,BCE+ABC=180,ABCE,ABE=CEB,BAC=EC

20、A,BD为AC边上的中线,AD=DC,在ABD和CED中,ABDCED(AAS),AB=EC,四边形ABCE是平行四边形,ABC=90,平行四边形ABCE是矩形【点睛】本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.20、(1)详见解析;(2)菱形;(3)当A=45,四边形BECD是正方形【解析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出CDB=90,再根据正方形的判定推出即可【详解】(1)DEBC,DFP=90,ACB=9

21、0,DFB=ACB,DE/AC,MN/AB,四边形ADEC为平行四边形,CE=AD;(2)菱形,理由如下:在直角三角形ABC中,D为AB中点,BD=AD,CE=AD,BD=CE,MN/AB,BECD是平行四边形,ACB=90,D是AB中点,BD=CD,(斜边中线等于斜边一半)四边形BECD是菱形;(3)若D为AB中点,则当A=45时,四边形BECD是正方形,理由:A=45,ACB=90,ABC=45,四边形BECD是菱形,DC=DB,DBC=DCB=45,CDB=90,四边形BECD是菱形,四边形BECD是正方形,故答案为45.【点睛】本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定

22、,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.21、(1)日均销售量p(桶)与销售单价x(元)的函数关系为p=50x+850;(2)该经营部希望日均获利1350元,那么销售单价是9元【解析】(1)设日均销售p(桶)与销售单价x(元)的函数关系为:p=kx+b(k0),把(7,500),(12,250)代入,得到关于k,b的方程组,解方程组即可;(2)设销售单价应定为x元,根据题意得,(x-5)p-250=1350,由(1)得到p=-50x+850,于是有(x-5)(-50x+850)-250=1350,然后整理,解方程得到x1=9,x2=13,满足7x12的

23、x的值为所求;【详解】(1)设日均销售量p(桶)与销售单价x(元)的函数关系为p=kx+b,根据题意得,解得k=50,b=850,所以日均销售量p(桶)与销售单价x(元)的函数关系为p=50x+850;(2)根据题意得一元二次方程 (x5)(50x+850)250=1350,解得x1=9,x2=13(不合题意,舍去),销售单价不得高于12元/桶,也不得低于7元/桶,x=13不合题意,答:若该经营部希望日均获利1350元,那么销售单价是9元【点睛】本题考查了一元二次方程及一次函数的应用,解题的关键是通过题目和图象弄清题意,并列出方程或一次函数,用数学知识解决生活中的实际问题22、(1)(1,0)

24、,(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使SACP4,见解析;(3)见解析【解析】(1)根据坐标轴上点的特点建立方程求解,即可得出结论;(2)在直线AC下方轴x上一点,使SACH4,求出点H坐标,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,即可得出结论;(3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,再由得出,进而求出,同理可得,再根据,即可得出结论【详解】(1)针对于抛物线,令x0,则,令y0,则,解得,x1或x3,综上所述:,;(2)由(1)知,BMFM,直线AC的解析式为:,联立抛物线解析式得:

25、,解得:或,如图1,设H是直线AC下方轴x上一点,AHa且SACH4,解得:,过H作lAC,直线l的解析式为,联立抛物线解析式,解得,即:在直线AC下方的抛物线上不存在点P,使;(3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,设,直线DE的解析式为,联立直线DE的解析式与抛物线解析式联立,得,DGx轴,DGOM,即,同理可得,即,直线DE的解析式为,直线DE必经过一定点【点睛】本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.23、(2)证明见解析;(2)四边形EBFD是矩形理由见解析.【解析】分析:(1

26、)根据SAS即可证明;(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:四边形ABCD是平行四边形,OA=OC,OB=OD,AE=CF,OE=OF,在DEO和BOF中,DOEBOF(2)结论:四边形EBFD是矩形理由:OD=OB,OE=OF,四边形EBFD是平行四边形,BD=EF,四边形EBFD是矩形点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型24、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润9

27、1万元【解析】(1)设甲型号的产品有x万只,则乙型号的产品有(20x)万只,根据销售收入为300万元可列方程18x+12(20x)=300,解方程即可;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价成本列出W与y的一次函数,根据y的范围确定出W的最大值即可【详解】(1)设甲型号的产品有x万只,则乙型号的产品有(20x)万只,根据题意得:18x+12(20x)=300,解得:x=10,则20x=2010=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20y)万只,根据题意得:13y+8.8(20y)239,解得:y15,根据题意得:利润W=(18121)y+(1280.8)(20y)=1.8y+64,当y=15时,W最大,最大值为91万元所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁