《2023届湖南省长沙市雨花区重点达标名校十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届湖南省长沙市雨花区重点达标名校十校联考最后数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且ABCD入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,
2、与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )AAODBCAO BCDOCDODBC2若分式有意义,则a的取值范围为( )Aa4Ba4Ca4Da43如图,是反比例函数图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内不包括边界的整数点个数是k,则抛物线向上平移k个单位后形成的图象是ABCD4如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sinAOB=,反比例函数在第一象限内的图象经过点A,与BC交于点F,删AOF的面积等于( )A10 B9 C8 D65如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上
3、的情况,把鱼竿AC转动到AC的位置,此时露在水面上的鱼线BC为m,则鱼竿转过的角度是()A60B45C15D906甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是( )ABCD7如图,在平面直角坐标系中,ABC与A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为()A(4,3)B(3,4)C(3,3)D(4,4)8为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a2b,2ab,例如:明文1,2对应的
4、密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A3,1B1,3C3,1D1,39如图,在ABC中,点D在BC上,DEAC,DFAB,下列四个判断中不正确的是( )A四边形AEDF是平行四边形B若BAC90,则四边形AEDF是矩形C若AD平分BAC,则四边形AEDF是矩形D若ADBC且ABAC,则四边形AEDF是菱形10有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )A4.8,6,6B5,5,5C4.8,6,5D5,6,6二、填空题(共7小题,每小题3分,满分21分)11某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为
5、_元.12如图,PC是O的直径,PA切O于点P,AO交O于点B;连接BC,若,则_.13如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则OAB的正弦值是_14若代数式有意义,则x的取值范围是_15有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_.有个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则的最大值为_16如图的三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕
6、为BD.则AED的周长为_cm.17若二次函数yx24xk的最大值是9,则k_三、解答题(共7小题,满分69分)18(10分)计算:解方程:19(5分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AEBF于点G,求证:AE=BF;(2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AEBF于点M,探究AE与BF的数量关系,并证明你的结论;(3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系; 20(8分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的
7、四大新生事物”进行调查,随机调查了人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图根据图中信息求出,;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?21(10分)如图,AB为O的直径,点E在O,C为弧BE的中点,过点C作直线CDAE于D,连接AC、BC试判断直线CD与O的位置关系,并说明理由若AD=2,AC=,求O的半径22(10分)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB相交于点E,与边CD相交于点F(1)求证:OE=OF;(2)如图2,连接D
8、E,BF,当DEAB时,在不添加其他辅助线的情况下,直接写出腰长等于BD的所有的等腰三角形23(12分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上24(14分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:.书法比赛,.绘画比赛,.乐器比赛,.象棋
9、比赛,.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:图1 各项报名人数扇形统计图:图2 各项报名人数条形统计图:根据以上信息解答下列问题:(1)学生报名总人数为 人;(2)如图1项目D所在扇形的圆心角等于 ; (3)请将图2的条形统计图补充完整;(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. AOD
10、,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. CAO B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. DOC,园丁与入口的距离逐渐增大,不符合;D. ODBC,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.2、A【解析】分式有意义时,分母a-40【详解】依题意得:a40,解得a4.故选:A【点睛】此题考查分式有意义的条件,难度不大3、A【解析】依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线向上平移5个单位后形成的图象【详解】解:如图,反比例函数图象与坐标轴围成的
11、区域内不包括边界的整数点个数是5个,即,抛物线向上平移5个单位后可得:,即,形成的图象是A选项故选A【点睛】本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k的值,利用二次函数图象的平移规律进行解答4、A【解析】 过点A作AMx轴于点M,过点F作FNx轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论解:过点A作AMx轴于点M,过点F作FNx轴于点N,如图所示设O
12、A=a,BF=b,在RtOAM中,AMO=90,OA=a,sinAOB=,AM=OAsinAOB=a,OM=a,点A的坐标为(a, a)点A在反比例函数y=的图象上,aa=a2=12,解得:a=5,或a=5(舍去)AM=8,OM=1四边形OACB是菱形,OA=OB=10,BCOA,FBN=AOB在RtBNF中,BF=b,sinFBN=,BNF=90,FN=BFsinFBN=b,BN=b,点F的坐标为(10+b,b)点F在反比例函数y=的图象上,(10+b)b=12,SAOF=SAOM+S梯形AMNFSOFN=S梯形AMNF=10故选A“点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数
13、图象上点的坐标特征,解题的关键是找出SAOF=S菱形OBCA.5、C【解析】试题解析:sinCAB=CAB=45,CAB=60CAC=60-45=15,鱼竿转过的角度是15故选C考点:解直角三角形的应用6、C【解析】由实际问题抽象出方程(行程问题)【分析】甲车的速度为千米/小时,则乙甲车的速度为千米/小时甲车行驶30千米的时间为,乙车行驶40千米的时间为,根据甲车行驶30千米与乙车行驶40千米所用时间相同得故选C7、A【解析】延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标【详解】如图,点P的坐标为(-4,-3)故选A【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且
14、对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心8、A【解析】根据题意可得方程组,再解方程组即可【详解】由题意得:,解得:,故选A9、C【解析】A选项,在ABC中,点D在BC上,DEAC,DFAB,DEAF,DFAE,四边形AEDF是平行四边形;即A正确;B选项,四边形AEDF是平行四边形,BAC=90,四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,ADBC”可证明AD平分BAC,从而可
15、通过证EAD=CAD=EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.10、C【解析】解:在这一组数据中6是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,平均数是:(3+4+5+6+6)5=4.8,故选C【点睛】本题考查众数;算术平均数;中位数二、填空题(共7小题,每小题3分,满分21分)11、28【解析】设标价为x元,那么0.9x-21=2120%,x=28.12、26【解析】根据圆周角定理得到AOP=2C=64,根据切线的性质定理得到APO=90,根据直角三角形两锐角互余计算即可【详
16、解】由圆周角定理得:AOP=2C=64PC是O的直径,PA切O于点P,APO=90,A=90AOP=9064=26故答案为:26【点睛】本题考查了切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键13、【解析】如图,过点O作OCAB的延长线于点C,则AC=4,OC=2,在RtACO中,AO=,sinOAB=故答案为14、x3【解析】由代数式有意义,得x-30,解得x3,故答案为: x3.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义:分母为零;分式有意义:分母不为零;分式值为零:分子为零且分母不为零.15、18 1 【解析】有四个边长均为1的
17、正六边形,采用方式1拼接,利用4n+2的规律计算;把六个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多【详解】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为44+2=18;按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n的最大值为1故答案为:18;1【点睛】本题考查了正多边形和圆,以及图形的变化类规律总结问题,根据题意,得出规律是解决此题的关键16、7【解析】根据翻折变换的性质可得BE=BC,DE=CD,然后求出AE,再求出ADE的周长=AC+AE【详解】折叠这个三角形点C落在AB边上的点E处,折痕为BD,BE=BC,DE=C
18、D,AE=AB-BE=AB-BC=8-6=2cm,ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm故答案为:7.【点睛】本题考查了翻折变换的性质,翻折前后对应边相等,对应角相等17、5【解析】y=(x2)2+4+k,二次函数y=x24x+k的最大值是9,4+k=9,解得:k=5,故答案为:5.三、解答题(共7小题,满分69分)18、 (1)10;(2)原方程无解.【解析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解
19、】(1)原式10;(2)去分母得:3(5x4)+3x64x+10,解得:x2,经检验:x2是增根,原方程无解【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验19、(1)证明见解析;(2)AE=BF,(3)AE=BF;【解析】(1)根据正方形的性质,可得ABC与C的关系,AB与BC的关系,根据两直线垂直,可得AMB的度数,根据直角三角形锐角的关系,可得ABM与BAM的关系,根据同角的余角相等,可得BAM与CBF的关系,根据ASA,可得ABEBCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到ABC=C,由余角的性质得到BAM=CBF,根据相似三角形的性质即可得到结
20、论;(3)结论:AE=BF证明方法类似(2);【详解】(1)证明:四边形ABCD是正方形,ABC=C,AB=BCAEBF,AMB=BAM+ABM=90,ABM+CBF=90,BAM=CBF在ABE和BCF中,ABEBCF(ASA),AE=BF;(2)解:如图2中,结论:AE=BF,理由:四边形ABCD是矩形,ABC=C,AEBF,AMB=BAM+ABM=90,ABM+CBF=90,BAM=CBF,ABEBCF,AE=BF(3)结论:AE=BF理由:四边形ABCD是矩形,ABC=C,AEBF,AMB=BAM+ABM=90,ABM+CBF=90,BAM=CBF,ABEBCF,AE=BF【点睛】本题
21、考查了四边形综合题、相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的性质,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键20、(1)100,35;(2)补全图形,如图;(3)800人【解析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.【详解】解:(1)被调查总人数为m=1010%=100人,用支付宝人数所占百分比n%= ,m=100,n=35.(2)网购人数为10015%=15人,微信
22、人数所占百分比为,补全图形如图:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为200040%=800人.【点睛】本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.21、(1)直线CD与O相切;(2)O的半径为1.1【解析】(1)相切,连接OC,C为的中点,1=2,OA=OC,1=ACO,2=ACO,ADOC,CDAD,OCCD,直线CD与O相切;(2)连接CE,AD=2,AC=,ADC=90,CD=,CD是O的切线,=ADDE,DE=1,CE=,C为的中点,BC=CE=,AB为O的直径,ACB=90,AB=2半径为
23、1.122、(1)证明见解析;(2)DOF,FOB,EOB,DOE【解析】(1)由四边形ABCD是平行四边形,可得OA=OC,ABCD,则可证得AOECOF(ASA),继而证得OE=OF;(2)证明四边形DEBF是矩形,由矩形的性质和等腰三角形的性质即可得出结论【详解】(1)四边形ABCD是平行四边形,OA=OC,ABCD,OB=OD,OAE=OCF,在OAE和OCF中,AOECOF(ASA),OE=OF;(2)OE=OF,OB=OD,四边形DEBF是平行四边形,DEAB,DEB=90,四边形DEBF是矩形,BD=EF,OD=OB=OE=OF=BD,腰长等于BD的所有的等腰三角形为DOF,FO
24、B,EOB,DOE【点睛】本题考查了等腰三角形的性质与平行四边形的性质,解题的关键是熟练的掌握等腰三角形的性质与平行四边形的性质.23、(1)作图见解析;(2)作图见解析.【解析】试题分析:(1)通过数格子可得到点P关于AC的对称点,再直接利用勾股定理可得到周长;(2)利用网格结合矩形的性质以及勾股定理可画出矩形.试题解析:(1)如图1所示:四边形AQCP即为所求,它的周长为:;(2)如图2所示:四边形ABCD即为所求考点:1轴对称;2勾股定理.24、(1)200;(2)54;(3)见解析;(4)【解析】(1)根据A的人数及所占的百分比即可求出总人数;(2)用D的人数除以总人数再乘360即可得出答案; (3)用总人数减去A,B,D,E的人数即为C对应的人数,然后即可把条形统计图补充完整;(4)用树状图列出所有的情况,找出恰好选中甲、乙两名同学的情况数,利用概率公式求解即可【详解】解:(1)学生报名总人数为(人),故答案为:200;(2)项目所在扇形的圆心角等于,故答案为:54;(3)项目的人数为,补全图形如下:(4)画树状图得:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.恰好选中甲、乙两名同学的概率为.【点睛】本题主要考查扇形统计图与条形统计图的结合,能够从图表中获取有用信息,掌握概率公式是解题的关键