《2023届河南省郑州市枫杨外国语中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届河南省郑州市枫杨外国语中考数学最后冲刺模拟试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1四根长度分别为3,4,6,(为正整数)的木棒,从中任取三根首尾顺次相接都能组成一个三角形,则( )A
2、组成的三角形中周长最小为9B组成的三角形中周长最小为10C组成的三角形中周长最大为19D组成的三角形中周长最大为162一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )ABCD3一个几何体的三视图如图所示,则该几何体的形状可能是()A BC D4一个几何体的三视图如图所示,则该几何体的表面积是()A24+2B16+4C16+8D16+125如图,点E是四边形ABCD的边BC延长线上的一点,则下列条件中不能判定ADBE的是()ABCD6如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使APD=60,PD交AC于点D,已知AB=a,设CD=
3、y,BP=x,则y与x函数关系的大致图象是()ABCD7已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是( )A平均数B标准差C中位数D众数8已知二次函数yax2+bx+c(a1)的图象如图所示,给出以下结论:a+b+c1;ab+c1;b+2a1;abc1其中所有正确结论的序号是( )ABCD9下列安全标志图中,是中心对称图形的是( )ABCD10下列函数中,当x0时,y值随x值增大而减小的是()Ayx2Byx1CD11据国家统计局2018年1月18日公布,2017年我国GDP总量为82712
4、2亿元,首次登上80万亿元的门槛,数据827122亿元用科学记数法表示为( )A8.271221012B8.271221013C0.8271221014D8.27122101412如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:AME=90;BAF=EDB;BMO=90;MD=2AM=4EM;其中正确结论的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13在RtABC内有边长分别为2,x,3的三个正方形如图摆放,则中间的正方形的边长x的值为_14在平面直角坐标系xOy中,若干个半径为1个单位长度,圆心角是的扇形按
5、图中的方式摆放,动点K从原点O出发,沿着“半径OA弧AB弧BC半径CD半径DE”的曲线运动,若点K在线段上运动的速度为每秒1个单位长度,在弧线上运动的速度为每秒个单位长度,设第n秒运动到点K,为自然数,则的坐标是_,的坐标是_15方程=的解是_16如图1,点P从ABC的顶点B出发,沿BCA匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则ABC的面积是_17对于实数x,我们规定x表示不大于x的最大整数,例如1.1=1,3=3,2.2=3,若=5,则x的取值范围是_18如图,在边长为1正方形ABCD中,点P是边AD上的动点,将PAB沿直线BP翻
6、折,点A的对应点为点Q,连接BQ、DQ则当BQ+DQ的值最小时,tanABP_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC直线l,BCE=71,CE=54cm(1)求单车车座E到地面的高度;(结果精确到1cm)(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E,求EE的长(结果精确到0.1cm)(参考数据:si
7、n710.95,cos710.33,tan712.90)20(6分)已知化简;如果、是方程的两个根,求的值21(6分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担李明按照相关政策投资销售本市生产的一种新型节能灯已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单
8、价不得高于元如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?22(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由23(8分)解方程:.24(10分)观察下列等式:222112+1322222+1422332+1第个等式为 ;根据上面等式的规律,猜想第n个等式
9、(用含n的式子表示,n是正整数),并说明你猜想的等式正确性25(10分)如图所示,AB是O的一条弦,ODAB,垂足为C,交O于点D,点E在O上若AOD=52,求DEB的度数;若OC=3,OA=5,求AB的长26(12分)如图,抛物线y=+bx+c交x轴于点A(2,0)和点B,交y轴于点C(0,3),点D是x轴上一动点,连接CD,将线段CD绕点D旋转得到DE,过点E作直线lx轴,垂足为H,过点C作CFl于F,连接DF(1)求抛物线解析式;(2)若线段DE是CD绕点D顺时针旋转90得到,求线段DF的长;(3)若线段DE是CD绕点D旋转90得到,且点E恰好在抛物线上,请求出点E的坐标27(12分)为
10、进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】首先写出所有的组合情况,再进一步根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【详解】解:其中的任意三根的组合有3、4、1;3、4、
11、x;3、1、x;4、1、x共四种情况,由题意:从中任取三根,首尾顺次相接都能组成一个三角形,可得3x7,即x=4或5或1当三边为3、4、1时,其周长为3+4+1=13;当x=4时,周长最小为3+4+4=11,周长最大为4+1+4=14;当x=5时,周长最小为3+4+5=12,周长最大为4+1+5=15;若x=1时,周长最小为3+4+1=13,周长最大为4+1+1=11;综上所述,三角形周长最小为11,最大为11,故选:D【点睛】本题考查的是三角形三边关系,利用了分类讨论的思想掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解答本题的关键2、A【解析】【分析】根据主视图是从几何体正面看
12、得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.3、D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为故选D考点:由三视图判断几何体视频4、D【解析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得【详解】该几何体的表面积为222+44+224=12+16,故选:D【点睛】本题主要考查由三视图判断几何
13、体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算5、A【解析】利用平行线的判定方法判断即可得到结果【详解】1=2, ABCD,选项A符合题意; 3=4, ADBC,选项B不合题意; D=5, ADBC,选项C不合题意; B+BAD=180, ADBC,选项D不合题意, 故选A【点睛】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键6、C【解析】根据等边三角形的性质可得出B=C=60,由等角的补角相等可得出BAP=CPD,进而即可证出ABPPCD,根据相似三角形的性质即可得出y=- x2+x,对照四个选项即可得出【详解】ABC为等边三角形,B=C=60,BC=AB=a,
14、PC=a-xAPD=60,B=60,BAP+APB=120,APB+CPD=120,BAP=CPD,ABPPCD,,即,y=- x2+x.故选C.【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键7、B【解析】试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为xi,则样本B中的数据为yi=xi+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.故选B.考点:统计量的选择8、C【解析】试题分析:由抛物线的开口方向判断a的符号,
15、由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断解:当x=1时,y=a+b+c=1,故本选项错误;当x=1时,图象与x轴交点负半轴明显大于1,y=ab+c1,故本选项正确;由抛物线的开口向下知a1,对称轴为1x=1,2a+b1,故本选项正确;对称轴为x=1,a、b异号,即b1,abc1,故本选项错误;正确结论的序号为故选B点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a1;否则a1;(2)b由对称轴和a的符号确定:由对称轴公式x=b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正
16、半轴,则c1;否则c1;(4)当x=1时,可以确定y=a+b+C的值;当x=1时,可以确定y=ab+c的值9、B【解析】试题分析:A不是中心对称图形,故此选项不合题意;B是中心对称图形,故此选项符合题意;C不是中心对称图形,故此选项不符合题意;D不是中心对称图形,故此选项不合题意;故选B考点:中心对称图形10、D【解析】A、yx2,对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小,故此选项错误B、k0,y随x增大而增大,故此选项错误C、B、k0,y随x增大而增大,故此选项错误D、y=(x0),反比例函数,k0,故在第一象限内y随x的增大而减小,故此选
17、项正确11、B【解析】由科学记数法的定义可得答案.【详解】解:827122亿即82712200000000,用科学记数法表示为8.271221013,故选B.【点睛】科学记数法表示数的标准形式为 (10且n为整数).12、D【解析】根据正方形的性质可得AB=BC=AD,ABC=BAD=90,再根据中点定义求出AE=BF,然后利用“边角边”证明ABF和DAE全等,根据全等三角形对应角相等可得BAF=ADE,然后求出ADE+DAF=BAD=90,从而求出AMD=90,再根据邻补角的定义可得AME=90,从而判断正确;根据中线的定义判断出ADEEDB,然后求出BAFEDB,判断出错误;根据直角三角形
18、的性质判断出AED、MAD、MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出正确;过点M作MNAB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GHAB,过点O作OKGH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出BMO=90,从而判断出正确【详解】在正方形ABCD中,AB=BC=AD,ABC=BAD=90,E、F分别为边AB,BC
19、的中点,AE=BF=BC,在ABF和DAE中, ,ABFDAE(SAS),BAF=ADE,BAF+DAF=BAD=90,ADE+DAF=BAD=90,AMD=180-(ADE+DAF)=180-90=90,AME=180-AMD=180-90=90,故正确;DE是ABD的中线,ADEEDB,BAFEDB,故错误;BAD=90,AMDE,AEDMADMEA,AM=2EM,MD=2AM,MD=2AM=4EM,故正确;设正方形ABCD的边长为2a,则BF=a,在RtABF中,AF= BAF=MAE,ABC=AME=90,AMEABF, ,即,解得AM= MF=AF-AM=,AM=MF,故正确;如图,
20、过点M作MNAB于N,则 即 解得MN=,AN=,NB=AB-AN=2a-=,根据勾股定理,BM=过点M作GHAB,过点O作OKGH于K,则OK=a-=,MK=-a=,在RtMKO中,MO=根据正方形的性质,BO=2a,BM2+MO2= BM2+MO2=BO2,BMO是直角三角形,BMO=90,故正确;综上所述,正确的结论有共4个故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)1
21、3、1【解析】解:如图在RtABC中(C=90),放置边长分别2,3,x的三个正方形,CEFOMEPFN,OE:PN=OM:PFEF=x,MO=2,PN=3,OE=x2,PF=x3,(x2):3=2:(x3),x=0(不符合题意,舍去),x=1故答案为1点睛:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边是解题的关键14、 【解析】设第n秒运动到Kn(n为自然数)点,根据点K的运动规律找出部分Kn点的坐标,根据坐标的变化找出变化规律“K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)”,依此规律即可得
22、出结论【详解】设第n秒运动到Kn(n为自然数)点,观察,发现规律:K1(),K2(1,0),K3(),K4(2,0),K5(),K4n+1(),K4n+2(2n+1,0),K4n+3(),K4n+4(2n+2,0)2018=4504+2,K2018为(1009,0)故答案为:(),(1009,0)【点睛】本题考查了规律型中的点的坐标,解题的关键是找出变化规律,本题属于中档题,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键15、x=1【解析】观察可得方程最简公分母为x(x1),去分母,转化为整式方程求解,结果要检验【详解】方程两边同乘x(x1)得:3x1(x
23、1),整理、解得x1检验:把x1代入x(x1)2x1是原方程的解,故答案为x1【点睛】解分式方程的基本思想是把分式方程转化为整式方程,具体方法是方程两边同时乘以最简公分母,在此过程中有可能会产生增根,增根是转化后整式的根,不是原方程的根,因此要注意检验16、12【解析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出线段长度解答【详解】根据题意观察图象可得BC=5,点P在AC上运动时,BPAC时,BP有最小值,观察图象可得,BP的最小值为4,即BPAC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,
24、所以的面积是=12.【点睛】本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型17、11x1【解析】根据对于实数x我们规定x不大于x最大整数,可得答案【详解】由=5,得: ,解得11x1,故答案是:11x1【点睛】考查了解一元一次不等式组,利用x不大于x最大整数得出不等式组是解题关键18、1【解析】连接DB,若Q点落在BD上,此时和最短,且为,设APx,则PD1x,PQx解直角三角形得到AP1,根据三角函数的定义即可得到结论【详解】如图:连接DB,若Q点落在BD上,此时和最短,且为,设APx,则PD1x,PQxPDQ45,PDPQ,即1x,x1,AP1,tan
25、ABP1,故答案为:1【点睛】本题考查了翻折变换(折叠问题),正方形的性质,轴对称最短路线问题,正确的理解题意是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)81cm;(2)8.6cm;【解析】(1)作EMBC于点M,由EM=ECsinBCE可得答案;(2)作EHBC于点H,先根据EC=求得EC的长度,再根据EE=CECE可得答案【详解】(1)如图1,过点E作EMBC于点M由题意知BCE=71、EC=54,EM=ECsinBCE=54sin7151.3,则单车车座E到地面的高度为51.3+3081cm;(2)如图2所示,过点E作EHBC于
26、点H由题意知EH=700.85=59.5,则EC=62.6,EE=CECE=62.654=8.6(cm)【点睛】本题考查了解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答20、 (1) ;(2)-4.【解析】(1)先通分,再进行同分母的减法运算,然后约分得到原式 (2)利用根与系数的关系得到 然后利用整体代入的方法计算【详解】解:(1)(2)、是方程,【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程 的两根时, 也考查了分式的加减法21、(1)政府这个月为他承担的总差价为644元;(2)当销售单价定为34元时,每月可获得最大利润144元;(3)销售单价定为25元时
27、,政府每个月为他承担的总差价最少为544元【解析】试题分析:(1)把x=24代入y=14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价成本价,得w=(x14)(14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令14x2+644x5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值试题解析:(1)当x=24时,y=14x+544=1424+544=344,344(1214)=3442=644元,即政府这个月为他承担的总差价为644元;(2)依题意
28、得,w=(x14)(14x+544)=14x2+644x5444=14(x34)2+144a=144,当x=34时,w有最大值144元即当销售单价定为34元时,每月可获得最大利润144元;(3)由题意得:14x2+644x5444=2,解得:x1=24,x2=1a=144,抛物线开口向下,结合图象可知:当24x1时,w2又x25,当24x25时,w2设政府每个月为他承担的总差价为p元,p=(1214)(14x+544)=24x+3k=244p随x的增大而减小,当x=25时,p有最小值544元即销售单价定为25元时,政府每个月为他承担的总差价最少为544元考点:二次函数的应用22、(1);(2)
29、规则是公平的;【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:P(小王)=,P(小李)=,规则不公平点睛:本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比23、 【解析】分析:此题应先将原分式方程两边同时乘以最简公分母,则原分式方程可化为整式方程,解出即可.详解:
30、去分母,得 去括号,得 移项,得 合并同类项,得 系数化为1,得经检验,原方程的解为点睛:本题主要考查分式方程的解法.注意:解分式方程必须检验.24、(1)522442+1;(2)(n+1)22nn2+1,证明详见解析【解析】(1)根据的规律即可得出第个等式;(2)第n个等式为(n+1)22nn2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边【详解】(1)222112+1322222+1422332+1第个等式为522442+1,故答案为:522442+1,(2)第n个等式为(n+1)22nn2+1(n+1)22nn2+2n+12nn2+1【点睛】本题主要考查了整式的运算,熟练掌
31、握完全平方公式是解答本题的关键25、 (1)26;(2)1.【解析】试题分析:(1)根据垂径定理,得到,再根据圆周角与圆心角的关系,得知E=O,据此即可求出DEB的度数;(2)由垂径定理可知,AB=2AC,在RtAOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的长试题解析:(1)AB是O的一条弦,ODAB,DEB=AOD=52=26;(2)AB是O的一条弦,ODAB,AC=BC,即AB=2AC,在RtAOC中,AC=4,则AB=2AC=1考点:垂径定理;勾股定理;圆周角定理26、 (1) 抛物线解析式为y=;(2) DF=3;(3) 点E的坐标为E1(4,1)或E2( ,)或E3(
32、,)或E4(,)【解析】(1)将点A、C坐标代入抛物线解析式求解可得;(2)证CODDHE得DH=OC,由CFFH知四边形OHFC是矩形,据此可得FH=OC=DH=3,利用勾股定理即可得出答案;(3)设点D的坐标为(t,0),由(1)知CODDHE得DH=OC、EH=OD,再分CD绕点D顺时针旋转和逆时针旋转两种情况,表示出点E的坐标,代入抛物线求得t的值,从而得出答案【详解】(1)抛物线y=+bx+c交x轴于点A(2,0)、C(0,3),解得:,抛物线解析式为y=+x+3;(2)如图1CDE=90,COD=DHE=90,OCD+ODC=HDE+ODC,OCD=HDE又DC=DE,CODDHE
33、,DH=OC又CFFH,四边形OHFC是矩形,FH=OC=DH=3,DF=3;(3)如图2,设点D的坐标为(t,0)点E恰好在抛物线上,且EH=OD,DHE=90,由(2)知,CODDHE,DH=OC,EH=OD,分两种情况讨论:当CD绕点D顺时针旋转时,点E的坐标为(t+3,t),代入抛物线y=+x+3,得:(t+3)2+(t+3)+3=t,解得:t=1或t=,所以点E的坐标E1(4,1)或E2(,);当CD绕点D逆时针旋转时,点E的坐标为(t3,t),代入抛物线y=+x+3得:(t3)2+(t3)+3=t,解得:t=或t=故点E的坐标E3(,)或E4(,); 综上所述:点E的坐标为E1(4,1)或E2(,)或E3(,)或E4(,)【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、全等三角形的判定与性质、矩形的判定与性质及分类讨论思想的运用27、解:作AB的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M即可【解析】易得M在AB的垂直平分线上,且到C的距离等于AB的一半