《2023届湖南省洪江市市级名校十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届湖南省洪江市市级名校十校联考最后数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1如图,BD为O的直径,点A为弧BDC的中点,ABD35,则DBC()A20B35C15D452已知正多边形的一个外角为36,则该正多边形的边数为( ).A12B10C8D63将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A10cmB30cmC45cmD300cm4小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A30和 20 B30和25 C30和22.5 D30和17.55如图,在正方形ABCD中,点E,F分别在BC,CD上,AEAF,AC
3、与EF相交于点G,下列结论:AC垂直平分EF;BE+DFEF;当DAF15时,AEF为等边三角形;当EAF60时,SABESCEF,其中正确的是()ABCD6二次函数(a、b、c是常数,且a0)的图象如图所示,下列结论错误的是( )A4acb2Babc0Cb+c3aDab7的相反数是( )AB2CD8已知函数y=的图象如图,当x1时,y的取值范围是()Ay1By1Cy1或y0Dy1或y09如图,在矩形ABCD中,AB4,AD5,AD,AB,BC分别与O相切于E,F,G三点,过点D作O的切线交BC于点M,切点为N,则DM的长为( )ABCD10观察图中的“品”字形中个数之间的规律,根据观察到的规
4、律得出a的值为A75B89C103D139二、填空题(本大题共6个小题,每小题3分,共18分)11计算:2cos60+(5)=_.12请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b)6= 13一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别现从袋子中随机摸出一个球,则它是黑球的概率是_14如图,在平面直角坐标系xOy中,DEF可以看作是ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由ABC得到DEF的过程:_152017我市社会消费品零售总额达18800000000元,把18800000000用科学记数法表示为_16从2
5、,1,2这三个数中任取两个不同的数相乘,积为正数的概率是_三、解答题(共8题,共72分)17(8分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标18(8分)楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=30米,与亭子距离CE=18米,小丽从楼房顶测得E点的俯角为45,求楼房AB的高(注:坡度i是指坡面的铅直高度与水平宽度的比)19(8
6、分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形小胖把具有这个规律的图形称为“手拉手”图形如图1,在“手拉手”图形中,小胖发现若BACDAE,ABAC,ADAE,则BDCE(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,ABBC,ABCBDC60,求证:AD+CDBD;(3)如图3,在ABC中,ABAC,BACm,点E为ABC外一点,点D为BC中点,EBCACF,EDFD,求EAF的度数(用含有m的式子表示)20(8分)某校师生到距学校20千米的
7、公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?21(8分)如图,AB是O的直径,CD切O于点D,且BDOC,连接AC(1)求证:AC是O的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和)22(10分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字1、0、2,它们除了数字不同外,其他都完全相同随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标再将此球放回、搅匀,然后由小华再从
8、布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率23(12分)如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DECD,连接AE(1)求证:四边形ABDE是平行四边形;(2)连接OE,若ABC60,且ADDE4,求OE的长24如图1,菱形ABCD,AB=4,ADC=120o,连接对角线AC、BD交于点O, (1)如图2,将AOD沿DB平移,使点D与点O重合,求平移后的ABO与菱形ABCD重合部分的面积.(2)如图3,将ABO绕点O逆时针旋转交AB于点E,交BC于
9、点F,求证:BE+BF=2,求出四边形OEBF的面积. 参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据ABD35就可以求出的度数,再根据,可以求出 ,因此就可以求得的度数,从而求得DBC【详解】解:ABD35,的度数都是70,BD为直径,的度数是18070110,点A为弧BDC的中点,的度数也是110,的度数是110+11018040,DBC20,故选:A【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力2、B【解析】利用多边形的外角和是360,正多边形的每个外角都是36,即可求出答案【详解】解:3603610,所以这个正多边形是正十边形故选:B【点
10、睛】本题主要考查了多边形的外角和定理是需要识记的内容3、A【解析】根据已知得出直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。【详解】直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形假设每个圆锥容器的地面半径为解得故答案选A.【点睛】本题考查扇形弧长的计算方法和扇形围成的圆锥底面圆的半径的计算方法。4、C【解析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为=22.5,故
11、选:C【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错5、C【解析】通过条件可以得出ABEADF,从而得出BAE=DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设BC=a,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;当DAF=15时,可计算出EAF=60,即可判断EAF为等边三角形,当EAF=60时,设EC=
12、x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出SCEF和SABE,再通过比较大小就可以得出结论【详解】四边形ABCD是正方形,ABAD,B=D=90在RtABE和RtADF中,RtABERtADF(HL),BE=DFBC=CD,BC-BE=CD-DF,即CE=CF,AE=AF,AC垂直平分EF(故正确)设BC=a,CE=y,BE+DF=2(a-y)EF=y,BE+DF与EF关系不确定,只有当y=(2)a时成立,(故错误)当DAF=15时,RtABERtADF,DAF=BAE=15,EAF=90-215=60,又AE=AFAEF为等边三角形(故正
13、确)当EAF=60时,设EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2(x)2x2=2y(x+y)SCEF=x2,SABE=y(x+y),SABE=SCEF(故正确)综上所述,正确的有,故选C【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键6、D【解析】根据二次函数的图象与性质逐一判断即可求出答案【详解】由图象可知:0,b24ac0,b24ac,故A正确;抛物线开口向上,a0,抛物线与y轴的负半轴,c0,抛物线对称轴为x=0,b0,abc0,故B正确;当x=1
14、时,y=a+b+c0,4a0,a+b+c4a,b+c3a,故C正确;当x=1时,y=ab+c0,ab+cc,ab0,ab,故D错误;故选D考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用7、B【解析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以2的相反数是2,故选B【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .8、C【解析】试题分析:根据反比例函数的性质,再结合函数的图象即可解答本题解:根据反比例函数的性质和图象显示可知:此函数为减函数,x-1时,在第三象限内y的取值范围是y-
15、1;在第一象限内y的取值范围是y1故选C考点:本题考查了反比例函数的性质点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要注意分析反比例函数的基本性质和知识,反比例函数y=的图象是双曲线,当k1时,图象在一、三象限,在每个象限内y随x的增大而减小;当k1时,图象在二、四象限,在每个象限内,y随x的增大而增大9、A【解析】试题解析:连接OE,OF,ON,OG,在矩形ABCD中,A=B=90,CD=AB=4,AD,AB,BC分别与O相切于E,F,G三点,AEO=AFO=OFB=BGO=90,四边形AFOE,FBGO是正方形,AF=BF=AE=BG=2,DE=3,DM是O的切线,DN=DE
16、=3,MN=MG,CM=5-2-MN=3-MN,在RtDMC中,DM2=CD2+CM2,(3+NM)2=(3-NM)2+42,NM=,DM=3+=,故选B考点:1.切线的性质;3.矩形的性质10、A【解析】观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】解:原式=12+1=1故答案为112、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2【解析】通过观察可以看出(a+b)2
17、的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2【详解】通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b213、【解析】根据概率的概念直接求得.【详解】解:46=.故答案为:.【点睛】本题用到的知识点为:概率=所求情况数与总情况数之比.14、平移,轴对称【解析】分析:根据平移的性质和轴对称的性质即可得到由OCD得到AOB的过程详解:ABC向上平移5个单位,再沿y
18、轴对折,得到DEF,故答案为:平移,轴对称点睛:考查了坐标与图形变化-旋转,平移,轴对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小15、1.881【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:把18800000000用科学记数法表示为1.881,故答案为:1.881【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式
19、,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值16、 【解析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案【详解】列表如下:212224122242由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为,故答案为【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率所求情况数与总情况数之比三、解答题(共8题,共72分)17、(1) ,y=2x1;(2).【解析】(1)利用待定系数
20、法即可解答;(2)作MDy轴,交y轴于点D,设点M的坐标为(x,2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标【详解】解:(1)把点A(4,3)代入函数得:a=34=12,A(4,3)OA=1,OA=OB,OB=1,点B的坐标为(0,1)把B(0,1),A(4,3)代入y=kx+b得:y=2x1(2)作MDy轴于点D.点M在一次函数y=2x1上,设点M的坐标为(x,2x1)则点D(0,2x-1)MB=MC,CD=BD8-(2x-1)=2x-1+1解得:x=2x1= ,点M的坐标为 .【点睛】本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求
21、解析式18、(39+9)米【解析】过点E作EFBC的延长线于F,EHAB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在RtAEH中求出AH,继而可得楼房AB的高【详解】解:过点E作EFBC的延长线于F,EHAB于点H,在RtCEF中,=tanECF, ECF=30,EF=CE=10米,CF=10米,BH=EF=10米, HE=BF=BC+CF=(25+10)米,在RtAHE中,HAE=45, AH=HE=(25+10)米,AB=AH+HB=(35+10)米答:楼房AB的高为(35+10)米【点睛】本题考查解直角三角形的应用-仰角俯角问题;坡度坡角问题,掌握概念正确计算是
22、本题的解题关键19、(1)证明见解析;(2)证明见解析;(3)EAF =m.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明DABEAC即可;(2)如图2中,延长DC到E,使得DB=DE首先证明BDE是等边三角形,再证明ABDCBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM想办法证明AFEAFG,可得EAF=FAG=m.详(1)证明:如图1中,BAC=DAE,DAB=EAC,在DAB和EAC中,DABEAC,BD=EC(2)证明:如图2中,延长DC到E,使得DB=DEDB=DE,BDC=60,
23、BDE是等边三角形,BD=BE,DBE=ABC=60,ABD=CBE,AB=BC,ABDCBE,AD=EC,BD=DE=DC+CE=DC+ADAD+CD=BD(3)如图3中,将AE绕点E逆时针旋转m得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM由(1)可知EABGAC,1=2,BE=CG,BD=DC,BDE=CDM,DE=DM,EDBMDC,EM=CM=CG,EBC=MCD,EBC=ACF,MCD=ACF,FCM=ACB=ABC,1=3=2,FCG=ACB=MCF,CF=CF,CG=CM,CFGCFM,FG=FM,ED=DM,DFEM,FE=FM=FG,AE
24、=AG,AF=AF,AFEAFG,EAF=FAG=m点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题20、自行车速度为16千米/小时,汽车速度为40千米/小时.【解析】设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,根据甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果同时到达,即可列方程求解.【详解】设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,由题意得,解得x=16,经检验x=16适合题意,2.5x=40,答
25、:自行车速度为16千米/小时,汽车速度为40千米/小时.21、(1)证明见解析;(2);【解析】(1)连接OD,先根据切线的性质得到CDO=90,再根据平行线的性质得到AOC=OBD,COD=ODB,又因为OB=OD,所以OBD=ODB,即AOC=COD,再根据全等三角形的判定与性质得到CAO=CDO=90,根据切线的判定即可得证;(2)因为AB=OC=4,OB=OD,RtODC与RtOAC是含30的直角三角形,从而得到DOB=60,即BOD为等边三角形,再用扇形的面积减去BOD的面积即可.【详解】(1)证明:连接OD,CD与圆O相切,ODCD,CDO=90,BDOC,AOC=OBD,COD=
26、ODB,OB=OD,OBD=ODB,AOC=COD,在AOC和DOC中,AOCEOC(SAS),CAO=CDO=90,则AC与圆O相切;(2)AB=OC=4,OB=OD,RtODC与RtOAC是含30的直角三角形,DOC=COA=60,DOB=60,BOD为等边三角形,图中阴影部分的面积=扇形DOB的面积DOB的面积,=【点睛】本题主要考查切线的判定与性质,全等三角形的判定与性质,含30角的直角三角形的性质,扇形的面积公式等,难度中等,属于综合题,解此题的关键在于熟练掌握其知识点.22、(1);(2)列表见解析,.【解析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可
27、能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:小华小丽-102-1(-1,-1)(-1,0)(-1,2)0(0,-1)(0,0)(0,2)2(2,-1)(2,0)(2,2)共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,P(点M落在如图所示的正方形网格内)=.考点:1列表或树状图求概率;2平面直角坐标系.23、 (1)见解析;(2)2.【解析】(1)四边形ABCD是平行四边形,由平行
28、四边形的性质,可得AB=DE, AB/DE ,则四边形ABDE是平行四边形;(2)因为AD=DE=1,则AD=AB=1,四边形ABCD是菱形,由菱形的性质及解直角三角形可得AO=ABsinABO=2,BO=ABcosABO=2, BD=1 ,则AE=BD,利用勾股定理可得OE【详解】(1)证明:四边形ABCD是平行四边形,ABCD,ABCDDECD,ABDE四边形ABDE是平行四边形;(2)ADDE1,ADAB1ABCD是菱形,ABBC,ACBD,又ABC60,ABO30在RtABO中,四边形ABDE是平行四边形,AEBD,又ACBD,ACAE在RtAOE中,【点睛】此题考查平行四边形的性质及判断,考查菱形的判断及性质,及解直角三角形,解题关键在于掌握判定定理和利用三角函数进行计算.24、 (1);(2)2,【解析】分析:(1)重合部分是等边三角形,计算出边长即可.证明:在图3中,取AB中点E,证明,即可得到 ,由知,在旋转过程60中始终有四边形的面积等于 =.详解:(1)四边形为菱形, 为等边三角形 AD/ 为等边三角形,边长 重合部分的面积:证明:在图3中,取AB中点E,由上题知, 又 , ,由知,在旋转过程60中始终有 四边形的面积等于=.点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.