2023届湖南望城金海校中考数学最后一模试卷含解析.doc

上传人:lil****205 文档编号:87839192 上传时间:2023-04-18 格式:DOC 页数:17 大小:911.50KB
返回 下载 相关 举报
2023届湖南望城金海校中考数学最后一模试卷含解析.doc_第1页
第1页 / 共17页
2023届湖南望城金海校中考数学最后一模试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《2023届湖南望城金海校中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届湖南望城金海校中考数学最后一模试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列手机手势解锁图案中,是轴对称图形的是( )ABCD2我国古代数学著作九章算术卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少

2、4元,问几人合买?这件物品多少钱?若设有x人合买,这件物品y元,则根据题意列出的二元一次方程组为()ABCD3将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )ABCD4的值是ABCD5如图,ABC内接于半径为5的O,圆心O到弦BC的距离等于3,则A的正切值等于( )A B C D6九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )ABCD7不等式组的解集在数轴上表示正确的是( )ABCD8若关于x的一元二次方程(k1)x24x10有两个不相等的实数根,则k的取值范围是( )Ak5Bk59如果,那么代数式的值

3、是( )A6B2C-2D-610如图,已知的周长等于 ,则它的内接正六边形ABCDEF的面积是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11计算:(+)=_12若方程x24x+10的两根是x1,x2,则x1(1+x2)+x2的值为_13若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_14如图,矩形纸片ABCD中,AB=3,AD=5,点P是边BC上的动点,现将纸片折叠使点A与点P重合,折痕与矩形边的交点分别为E,F,要使折痕始终与边AB,AD有交点,BP的取值范围是_15方程的解为 16已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段

4、DE绕点D顺时针旋转90得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_三、解答题(共8题,共72分)17(8分)如图,在ABC中,点D、E分别在边AB、AC上,DEBC,且DE=BC如果AC=6,求AE的长;设,求向量(用向量、表示)18(8分)如图,AB是O的直径, O过BC的中点D,DEAC求证: BDACED19(8分)在平面直角坐标系xOy中,抛物线,与x轴交于点C,点C在点D的左侧,与y轴交于点A求抛物线顶点M的坐标;若点A的坐标为,轴,交抛物线于点B,求点B的坐标;在的条件下,将抛物线在B,C两点之间的部分沿y轴翻折,翻折后的图象记为G,若直线与图象G有一个交点

5、,结合函数的图象,求m的取值范围20(8分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方米处的点C出发,沿斜面坡度的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,ABBC,AB/DE.求旗杆AB的高度.(参考数据:sin37,cos37,tan37.计算结果保留根号)21(8分)计算:(2)0+|1|+2cos3022(10分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘

6、制的不完整统计表:节目代号ABCDE节目类型新闻体育动画娱乐戏曲喜爱人数1230m549请你根据以上的信息,回答下列问题:(1)被调查学生的总数为 人,统计表中m的值为 扇形统计图中n的值为 ;(2)被调查学生中,最喜爱电视节目的“众数” ;(3)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生人数.23(12分)如图,点A的坐标为(4,0),点B的坐标为(0,2),把点A绕点B顺时针旋转90得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:(1)直接写出AB所在直线的解析式、点C的坐标、a的值;(2

7、)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;(3)是否存在这样的点P,使得QPO=OBC,若不存在,请说明理由;若存在,请你直接写出此时P点的坐标24解不等式:3x12(x1),并把它的解集在数轴上表示出来参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图

8、形的定义,熟练掌握定义是本题解题的关键.2、D【解析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题【详解】由题意可得:,故选D【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组3、A【解析】直接根据“上加下减,左加右减”的原则进行解答即可【详解】将抛物线向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为,故答案选A4、D【解析】根据特殊角三角函数值,可得答案【详解】解:,故选:D【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键5、C.【解析】试题分析:如答图,过点O作ODBC,垂足为

9、D,连接OB,OC,OB=5,OD=3,根据勾股定理得BD=4.A=BOC,A=BOD.tanA=tanBOD=.故选D考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义6、C【解析】试题分析:由题意可得,第一小组对应的圆心角度数是:360=72,故选C考点:1.扇形统计图;2.条形统计图7、D【解析】试题分析:,由得:x1,由得:x2,在数轴上表示不等式的解集是:,故选D考点:1在数轴上表示不等式的解集;2解一元一次不等式组8、B【解析】试题解析:关于x的一元二次方程方程有两个不相等的实数根,即,解得:k5且k1故选B9、A【解析】【分析】将所求代数式先利用单项式乘多项式

10、法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【详解】3a2+5a-1=0,3a2+5a=1,5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.10、C【解析】过点O作OHAB于点H,连接OA,OB,由O的周长等于6cm,可得O的半径,又由圆的内接多边形的性质可得AOB=60,即可证明AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6SOAB

11、即可得出答案【详解】过点O作OHAB于点H,连接OA,OB,设O的半径为r,O的周长等于6cm,2r=6,解得:r=3,O的半径为3cm,即OA=3cm,六边形ABCDEF是正六边形,AOB=360=60,OA=OB,OAB是等边三角形,AB=OA=3cm,OHAB,AH=AB,AB=OA=3cm,AH=cm,OH=cm,S正六边形ABCDEF=6SOAB=63=(cm2)故选C.【点睛】此题考查了正多边形与圆的性质此题难度适中,注意掌握数形结合思想的应用二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】去括号后得到答案.【详解】原式211,故答案为1.【点睛】本题主要考查了

12、去括号的概念,解本题的要点在于二次根式的运算.12、5【解析】由题意得, ,.原式 13、2【解析】侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长依此列出方程即可【详解】设母线长为x,根据题意得2x2=25,解得x=1故答案为2【点睛】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大14、1x1【解析】此题需要运用极端原理求解;BP最小时,F、D重合,由折叠的性质知:AF=PF,在RtPFC中,利用勾股定理可求得PC的长,进而可求得BP的值,即BP的最小值;BP最大时,E、B重合,根据折叠的性质即可得到AB=BP=1,即BP的最大值为1;【详解】解:如

13、图:当F、D重合时,BP的值最小;根据折叠的性质知:AF=PF=5;在RtPFC中,PF=5,FC=1,则PC=4;BP=xmin=1;当E、B重合时,BP的值最大;由折叠的性质可得BP=AB=1所以BP的取值范围是:1x1故答案为:1x1【点睛】此题主要考查的是图形的翻折变换,正确的判断出x的两种极值下F、E点的位置,是解决此题的关键15、【解析】试题分析:首先去掉分母,观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:,经检验,是原方程的根16、2或2【解析】本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过

14、程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.【详解】解: 当点在线段的延长线上时,如图3所示.过点作于,是正方形的对角线,,在中,由勾股定理,得:,在和中,,,当点在线段上时,如图4所示.过作于是正方形的对角线,在中,由勾股定理,得:在和中,,,故答案为或【点睛】本题主要考查了勾股定理和三角形全等的证明.三、解答题(共8题,共72分)17、(1)1;(2).【解析】(1)由平行线截线段成比例求得AE的长度;(2)利用平面向量的三角形法则解答【详解】(1)如图,DEBC,且DE=BC,又AC=6,AE=1(2),又DEBC,DE=BC,【

15、点睛】考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义18、证明见解析.【解析】不难看出BDA和CED都是直角三角形,证明BDACED,只需要另外找一对角相等即可,由于AD是ABC的中线,又可证ADBC,即AD为BC边的中垂线,从而得到B=C,即可证相似【详解】AB是O直径,ADBC,又BD=CD,AB=AC,B=C,又ADB=DEC=90,BDACED.【点睛】本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用19、(1)M的坐标为;(2)B(4,3);(3)或【解析】利用配方法将已知函数解析式转化为顶点式方程,可以直接得到答案 根据抛物线的对称性质

16、解答;利用待定系数法求得抛物线的表达式为根据题意作出图象G,结合图象求得m的取值范围【详解】解:(1) ,该抛物线的顶点M的坐标为;由知,该抛物线的顶点M的坐标为;该抛物线的对称轴直线是,点A的坐标为,轴,交抛物线于点B,点A与点B关于直线对称,;抛物线与y轴交于点,抛物线的表达式为抛物线G的解析式为:由由,得:抛物线与x轴的交点C的坐标为,点C关于y轴的对称点的坐标为把代入,得:把代入,得:所求m的取值范围是或故答案为(1)M的坐标为;(2)B(4,3);(3)或【点睛】本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式、二次函数的图象和性质,画出函数G的图象是解题的关键20、3

17、+3.5【解析】延长ED交BC延长线于点F,则CFD=90,RtCDF中求得CF=CDcosDCF=2、DF=CD=2,作EGAB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtanAEG=4tan37可得答案【详解】如图,延长ED交BC延长线于点F,则CFD=90,tanDCF=i=,DCF=30,CD=4,DF=CD=2,CF=CDcosDCF=4=2,BF=BC+CF=2+2=4,过点E作EGAB于点G,则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,又AED=37,AG=GEtanAEG=4tan37,则AB=AG+BG=4tan37+3.5=3+3.5,故旗

18、杆AB的高度为(3+3.5)米考点:1、解直角三角形的应用仰角俯角问题;2、解直角三角形的应用坡度坡角问题21、【解析】(1)原式利用二次根式的性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值进行化简即可得到结果【详解】原式,【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键22、(1)150;45,36, (2)娱乐 (3)1【解析】(1)由“体育”的人数及其所占百分比可得总人数,用总人数减去其它节目的人数即可得求得动画的人数m,用娱乐的人数除以总人数即可得n的值;(2)根据众数的定义求解可得;(3)用总人数乘以样本中喜爱新闻节目的人数所占比例【详解】解:(1)被调查的

19、学生总数为3020%150(人),m150(1230549)45,n%100%36%,即n36,故答案为150,45,36;(2)由题意知,最喜爱电视节目为“娱乐”的人数最多,被调查学生中,最喜爱电视节目的“众数”为娱乐,故答案为娱乐;(3)估计该校最喜爱新闻节目的学生人数为20001【点睛】本题考查了统计表、扇形统计图、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型23、(1)a=;(2)OP+AQ的最小值为2,此时点P的坐标为(1,);(3)P(4,8)或(4,8),【解析】(1)利用待定系数法求出直线AB解析式,根据旋转性质确定出C的坐标,代入二次函数解析式求

20、出a的值即可;(2)连接BQ,可得PQ与OB平行,而PQ=OB,得到四边形PQBO为平行四边形,当Q在线段AB上时,求出OP+AQ的最小值,并求出此时P的坐标即可;(3)存在这样的点P,使得QPO=OBC,如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),根据正切函数定义确定出m的值,即可确定出P的坐标【详解】解:(1)设直线AB解析式为y=kx+b,把A(4,0),B(0,2)代入得:,解得:,直线AB的解析式为y=x2,根据题意得:点C的坐标为(2,2),把C(2,2)代入二次函数解析式得:a=;(2)连接BQ,则易得PQOB,且PQ=OB,四边形PQBO是平行四边形,O

21、P=BQ,OP+AQ=BQ+AQAB=2,(等号成立的条件是点Q在线段AB上),直线AB的解析式为y=x2,可设此时点Q的坐标为(t,t2),于是,此时点P的坐标为(t,t),点P在抛物线y=x2上,t=t2,解得:t=0或t=1,当t=0,点P与点O重合,不合题意,应舍去,OP+AQ的最小值为2,此时点P的坐标为(1,);(3)P(4,8)或(4,8),如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),则tanHPO=,又,易得tanOBC=,当tanHPO=tanOBC时,可使得QPO=OBC,于是,得,解得:m=4,所以P(4,8)或(4,8)【点睛】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键24、【解析】试题分析:按照解一元一次不等式的步骤解不等式即可.试题解析:,.解集在数轴上表示如下点睛:解一元一次不等式一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁