《2023届安徽省庐阳区五校联考中考数学最后一模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届安徽省庐阳区五校联考中考数学最后一模试卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图是二次函数y=ax2+bx+c(a,b,c是常数,a0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1对于下列说法:ab0;2a+b=0;3a+c
2、0;a+bm(am+b)(m为实数);当1x3时,y0,其中正确的是()ABCD2潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖其中,数字2000亿元用科学记数法表示为()元(精确到百亿位)A21011 B21012 C2.01011 D2.010103如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得ACB15,ACD45,若l1、l2之间
3、的距离为50m,则A、B之间的距离为()A50mB25mC(50)mD(5025)m4关于反比例函数,下列说法正确的是( )A函数图像经过点(2,2);B函数图像位于第一、三象限;C当时,函数值随着的增大而增大;D当时,5如图,淇淇一家驾车从A地出发,沿着北偏东60的方向行驶,到达B地后沿着南偏东50的方向行驶来到C地,C地恰好位于A地正东方向上,则()B地在C地的北偏西50方向上;A地在B地的北偏西30方向上;cosBAC=;ACB=50其中错误的是()ABCD6如图是二次函数的部分图象,由图象可知不等式的解集是( )ABC且Dx1或x57在平面直角坐标系内,点P(a,a+3)的位置一定不在
4、()A第一象限B第二象限C第三象限D第四象限8一、单选题如图,ABC中,AB4,AC3,BC2,将ABC绕点A顺时针旋转60得到AED,则BE的长为()A5B4C3D29如图,四边形ABCD内接于O,若B130,则AOC的大小是()A130B120C110D10010矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH若BC=EF=2,CD=CE=1,则GH=()A1BCD11如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是( )AaBbCD12如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则ABC的
5、正切值是( )AB2CD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),ABx轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_ .14反比例函数的图象经过点和,则 _ 15为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_16化简的结果等于_17化简:=_18规定:x表示不大于x的最大整数,(x)表示不小于x的最小整数,x)
6、表示最接近x的整数(xn+0.5,n为整数),例如:1.3=1,(1.3)=3,1.3)=1则下列说法正确的是_(写出所有正确说法的序号)当x=1.7时,x+(x)+x)=6;当x=1.1时,x+(x)+x)=7;方程4x+3(x)+x)=11的解为1x1.5;当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有两个交点三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,ABBD,BAD18,C在BD上,BC0.5m根据规定,地下停车库
7、坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度小刚和小亮谁说得对?请你判断并计算出正确的限制高度(结果精确到0.1m,参考数据:sin180.31,cos180.95,tan180.325)20(6分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作O交AB于点D,交AC于点G,直线DF是O的切线,D为切点,交CB的延长线于点E(1)求证:DFAC;(2)求tanE的值21(6分)已知:a+b4(1)求代数式(a+1)(b+1)ab值;(2)若代数式a22ab+b2+2a+2b的值等于17,
8、求ab的值22(8分)解下列不等式组:23(8分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1(1810)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的
9、钱多,请你说明发生这一现象的原因;当10x50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?24(10分)如图,在顶点为P的抛物线y=a(x-h)2+k(a0)的对称轴1的直线上取点A(h,k+),过A作BCl交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线ml又分别过点B,C作直线BEm和CDm,垂足为E,D在这里,我们把点A叫此抛物线的焦点,BC叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形(1)直接写出抛物线y=x2的焦点坐标以及直径的长(2)求抛物线y=x2-x+的焦点坐标以及直径的长(3)已知抛物线y=a(x-h)2+k(a0)的直径为,求a的
10、值(4)已知抛物线y=a(x-h)2+k(a0)的焦点矩形的面积为2,求a的值直接写出抛物线y=x2-x+的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值25(10分)如图,已知A是O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB求证:AB是O的切线;若ACD=45,OC=2,求弦CD的长26(12分)如图,抛物线y=ax2+bx+c与x轴交于点A(1,0),B(4,0),与y轴交于点C(0,2)(1)求抛物线的表达式;(2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使BMP与ABD相似?
11、若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由27(12分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x(单位:万元)。销售部规定:当x16时,为“不称职”,当 时为“基本称职”,当 时为“称职”,当 时为“优秀”.根据以上信息,解答下列问题: 补全折线统计图和扇形统计图; 求所有“称职”和“优秀”的销售员销售额的中位数和众数; 为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励。如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元
12、(结果去整数)?并简述其理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=1时,y=ab+c;然后由图象确定当x取何值时,y2【详解】对称轴在y轴右侧,a、b异号,ab2,故正确;对称轴 2a+b=2;故正确;2a+b=2,b=2a,当x=1时,y=ab+c2,a(2a)+c=3a+c2,故错误;根据图示知,当m=1时,有最大值;当m1时,有am2+bm+ca+b+c,所以a+bm(am
13、+b)(m为实数)故正确如图,当1x3时,y不只是大于2故错误故选A【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握二次项系数a决定抛物线的开口方向,当a2时,抛物线向上开口;当a2时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab2),对称轴在y轴左; 当a与b异号时(即ab2),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点,抛物线与y轴交于(2,c)2、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对
14、值1时,n是正数;当原数的绝对值1时,n是负数【详解】2000亿元=2.01故选:C【点睛】考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、C【解析】如图,过点A作AMDC于点M,过点B作BNDC于点N则AM=BN通过解直角ACM和BCN分别求得CM、CN的长度,则易得AB =MN=CMCN,即可得到结论【详解】如图,过点A作AMDC于点M,过点B作BNDC于点N则AB=MN,AM=BN在直角ACM中,ACM=45,AM=50m,CM=AM=50m在直角BCN中,BCN=ACB+ACD=60,BN=50m,CN=
15、(m),MN=CMCN=50(m)则AB=MN=(50)m故选C【点睛】本题考查了解直角三角形的应用解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题4、C【解析】直接利用反比例函数的性质分别分析得出答案【详解】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-,当x1时,y-4,故此选项错误;故选C【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键5、B【解析
16、】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可【详解】如图所示,由题意可知,1=60,4=50,5=4=50,即B在C处的北偏西50,故正确;2=60,3+7=18060=120,即A在B处的北偏西120,故错误;1=2=60,BAC=30,cosBAC=,故正确;6=905=40,即公路AC和BC的夹角是40,故错误故选B【点睛】本题考查的是方向角,平行线的性质,特殊角的三角函数值,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解6、D【解析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:由图象得:对称轴是x=2,其中一个
17、点的坐标为(1,0),图象与x轴的另一个交点坐标为(1,0)由图象可知:的解集即是y0的解集,x1或x1故选D7、D【解析】判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.【详解】当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选D.【点睛】本题考查了点的坐标的知识点,解题的关键是由a的取值判断出相应的象限.8、B【解析】根据旋转的性质可得AB=AE,BAE=60,然后判断出AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB【详解】解:ABC绕点A顺
18、时针旋转60得到AED,AB=AE,BAE=60,AEB是等边三角形,BE=AB,AB=1,BE=1故选B【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义9、D【解析】分析:先根据圆内接四边形的性质得到 然后根据圆周角定理求 详解: 故选D.点睛:考查圆内接四边形的性质, 圆周角定理,掌握圆内接四边形的对角互补是解题的关键.10、C【解析】分析:延长GH交AD于点P,先证APHFGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案详解:如图,延长GH交AD于点P,四边形ABCD和四边形CEFG都是矩形,ADC=ADG=
19、CGF=90,AD=BC=2、GF=CE=1,ADGF,GFH=PAH,又H是AF的中点,AH=FH,在APH和FGH中,APHFGH(ASA),AP=GF=1,GH=PH=PG,PD=ADAP=1,CG=2、CD=1,DG=1,则GH=PG=,故选:C点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点11、D【解析】负数小于正数,在(0,1)上的实数的倒数比实数本身大ab ,故选D12、A【解析】分析:连接AC,根据勾股定理求出AC、BC、AB的长,根据勾股定理的逆定理得到ABC是直角三角形,根据正切的定义计算即可详解:连接AC,由网格特点和勾
20、股定理可知,AC=,AC2+AB2=10,BC2=10,AC2+AB2=BC2,ABC是直角三角形,tanABC=.点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y=3,A(2,3),B(2,0),y=kx过点
21、A(2,3),3=2k,k=,y=x,直线y=x平移后经过点B,设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14、-1【解析】先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,-3)代入即可得出m的值【详解】解:反比例函数y=的图象经过点(1,6),6=,解得k=6,反比例函数的解析式为y=点(m,-3)在此函数图象上上,-3=,解得m=-1故答案为-1【点睛】本题考查的是
22、反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键15、【解析】分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论详解:平均数是12,这组数据的和=127=84,被墨汁覆盖三天的数的和=84412=36,这组数据唯一众数是13,被墨汁覆盖的三个数为:10,13,13, 故答案为点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.16、【解析】先通分变为同分母分式,然后根据分式的减法法则计算即可【详解】解:原式故答案为:【点睛】此题考查的是分式的减
23、法,掌握分式的减法法则是解决此题的关键17、m【解析】解:原式=m故答案为m18、【解析】试题解析:当x=1.7时,x+(x)+x)=1.7+(1.7)+1.7)=1+1+1=5,故错误;当x=1.1时,x+(x)+x)=1.1+(1.1)+1.1)=(3)+(1)+(1)=7,故正确;当1x1.5时,4x+3(x)+x)=41+31+1=4+6+1=11,故正确;1x1时,当1x0.5时,y=x+(x)+x=1+0+x=x1,当0.5x0时,y=x+(x)+x=1+0+x=x1,当x=0时,y=x+(x)+x=0+0+0=0,当0x0.5时,y=x+(x)+x=0+1+x=x+1,当0.5x
24、1时,y=x+(x)+x=0+1+x=x+1,y=4x,则x1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有三个交点,故错误,故答案为考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、小亮说的对,CE为2.6m【解析】先根据CEAE,判断出CE为高,再根据解直角三角形的知识解答【详解】解:在ABD中,ABD90,BAD18,BA10m,tanBAD,BD10tan18,CDBDBC10tan18
25、0.52.7(m),在ABD中,CDE90BAD72,CEED,sinCDE,CEsinCDECDsin722.72.6(m),2.6m2.7m,且CEAE,小亮说的对答:小亮说的对,CE为2.6m【点睛】本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.20、(1)证明见解析;(2)tanCBG=【解析】(1)连接OD,CD,根据圆周角定理得BDC=90,由等腰三角形三线合一的性质得D为AB的中点,所以OD是中位线,由三角形中位线性质得:ODAC,根据切线的性质可得结论;(2)如图,连接BG,先证明EFBG,则CBG=E,求CBG的正切即可
26、【详解】解:(1)证明:连接OD,CD,BC是O的直径,BDC=90,CDAB,AC=BC,AD=BD,OB=OC,OD是ABC的中位线ODAC,DF为O的切线,ODDF,DFAC;(2)解:如图,连接BG,BC是O的直径,BGC=90,EFC=90=BGC,EFBG,CBG=E,RtBDC中,BD=3,BC=5,CD=4,SABC=,即64=5BG,BG=,由勾股定理得:CG=,tanCBG=tanE=.【点睛】本题考查了切线的性质、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角的正切进行转移是基本思路,利用面积法求BG的长是解决本题的难点21、(1)5;(2)1或1【解析】
27、(1)将原式展开、合并同类项化简得a+b+1,再代入计算可得;(2)由原式=(a-b)2+2(a+b)可得(a-b)2+24=17,据此进一步计算可得【详解】(1)原式=ab+a+b+1ab=a+b+1,当a+b=4时,原式=4+1=5;(2)a22ab+b2+2a+2b=(ab)2+2(a+b),(ab)2+24=17,(ab)2=9,则ab=1或1【点睛】本题主要考查代数式的求值,解题的关键是掌握多项式乘多项式的运算法则及整体思想的运用22、2x【解析】先分别求出两个不等式的解集,再求其公共解【详解】,解不等式得,x,解不等式得,x2,则不等式组的解集是2x【点睛】本题主要考查了一元一次不
28、等式组解集的求法,其简便求法就是用口诀求解求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)23、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到300.1(x10)=16,解方程即可求解;(3)由于根据(1)得到x1,又一次销售x(x10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y=,然后可以得到函数的增减性,再结合已知
29、条件即可解决问题试题解析:(1)设一次购买x只,则300.1(x10)=16,解得:x=1答:一次至少买1只,才能以最低价购买;(3)当10x1时,y=300.1(x10)13x=,当x1时,y=(1613)x=4x;综上所述:;(3)y=,当10x45时,y随x的增大而增大,即当卖的只数越多时,利润更大当45x1时,y随x的增大而减小,即当卖的只数越多时,利润变小且当x=46时,y1=303.4,当x=1时,y3=3y1y3即出现了卖46只赚的钱比卖1只赚的钱多的现象当x=45时,最低售价为300.1(4510)=16.5(元),此时利润最大故店家一次应卖45只,最低售价为16.5元,此时利
30、润最大考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论24、(1)4(1)4(3)(4)a=;当m=1-或m=5+时,1个公共点,当1-m1或5m5+时,1个公共点,【解析】(1)根据题意可以求得抛物线y=x1的焦点坐标以及直径的长;(1)根据题意可以求得抛物线y=x1-x+的焦点坐标以及直径的长;(3)根据题意和y=a(x-h)1+k(a0)的直径为,可以求得a的值;(4)根据题意和抛物线y=ax1+bx+c(a0)的焦点矩形的面积为1,可以求得a的值;根据(1)中的结果和图形可以求得抛物线y=x1-x+的焦点矩形与抛物线y=x1-1mx+m1+1公共点个数分别是1个以及1
31、个时m的值【详解】(1)抛物线y=x1,此抛物线焦点的横坐标是0,纵坐标是:0+=1,抛物线y=x1的焦点坐标为(0,1),将y=1代入y=x1,得x1=-1,x1=1,此抛物线的直径是:1-(-1)=4;(1)y=x1-x+=(x-3)1+1,此抛物线的焦点的横坐标是:3,纵坐标是:1+=3,焦点坐标为(3,3),将y=3代入y=(x-3)1+1,得3=(x-3)1+1,解得,x1=5,x1=1,此抛物线的直径时5-1=4;(3)焦点A(h,k+),k+=a(x-h)1+k,解得,x1=h+,x1=h-,直径为:h+-(h-)=,解得,a=,即a的值是;(4)由(3)得,BC=,又CD=AA
32、=所以,S=BCCD=1解得,a=;当m=1-或m=5+时,1个公共点,当1-m1或5m5+时,1个公共点,理由:由(1)知抛,物线y=x1-x+的焦点矩形顶点坐标分别为:B(1,3),C(5,3),E(1,1),D(5,1),当y=x1-1mx+m1+1=(x-m)1+1过B(1,3)时,m=1-或m=1+(舍去),过C(5,3)时,m=5-(舍去)或m=5+,当m=1-或m=5+时,1个公共点;当1-m1或5m5+时,1个公共点由图可知,公共点个数随m的变化关系为当m1-时,无公共点;当m=1-时,1个公共点;当1-m1时,1个公共点;当1m5时,3个公共点;当5m5+时,1个公共点;当m
33、=5+时,1个公共点;当m5+时,无公共点;由上可得,当m=1-或m=5+时,1个公共点;当1-m1或5m5+时,1个公共点【点睛】考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答25、(1)见解析;(2)+【解析】(1)利用题中的边的关系可求出OAC是正三角形,然后利用角边关系又可求出CAB=30,从而求出OAB=90,所以判断出直线AB与O相切;(2)作AECD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD【详解】(1)直线AB是O的切线
34、,理由如下:连接OAOC=BC,AC=OB,OC=BC=AC=OA, ACO是等边三角形,O=OCA=60,又B=CAB,B=30,OAB=90AB是O的切线(2)作AECD于点EO=60,D=30ACD=45,AC=OC=2,在RtACE中,CE=AE=;D=30,AD=2【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型26、 (1)y=x2+x+2;(2)满足条件的点P的坐标为(,)或(,)或(,5)或(,5)【解析】(1)利用待定系数法求抛物线的表达式;(2)使BMP与ABD
35、相似的有三种情况,分别求出这三个点的坐标.【详解】(1)抛物线与x轴交于点A(1,0),B(4,0),设抛物线的解析式为y=a(x+1)(x4),抛物线与y轴交于点C(0,2),a1(4)=2,a=,抛物线的解析式为y=(x+1)(x4)=x2+x+2;(2)如图1,连接CD,抛物线的解析式为y=x2+x+2,抛物线的对称轴为直线x=,M(,0),点D与点C关于点M对称,且C(0,2),D(3,2),MA=MB,MC=MD,四边形ACBD是平行四边形,A(1,0),B(4,0),C(3,22),AB2=25,BD2=(41)2+22=5,AD2=(3+1)2+22=20,AD2+BD2=AB2
36、,ABD是直角三角形,ADB=90,设点P(,m),MP=|m|,M(,0),B(4,0),BM=,BMP与ABD相似,当BMPADB时,m=,P(,)或(,),当BMPBDA时,m=5,P(,5)或(,5),即:满足条件的点P的坐标为P(,)或(,)或(,5)或(,5)【点睛】本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.27、(1)补全统计图如图见解析;(2) “称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)月销售额奖励标准应定为22万元.【解析】(1) 根据称职的人数及其所占百分比求得总人
37、数, 据此求得不称职、 基本称职和优秀的百分比, 再求出优秀的总人数, 从而得出销售 26 万元的人数, 据此即可补全图形 (2) 根据中位数和众数的定义求解可得;(3) 根据中位数的意义求得称职和优秀的中位数即可得出符合要求的数据 【详解】(1)依题可得:“不称职”人数为:2+2=4(人),“基本称职”人数为:2+3+3+2=10(人),“称职”人数为:4+5+4+3+4=20(人),总人数为:2050%=40(人),不称职”百分比:a=440=10%,“基本称职”百分比:b=1040=25%,“优秀”百分比:d=1-10%-25%-50%=15%,“优秀”人数为:4015%=6(人),得2
38、6分的人数为:6-2-1-1=2(人),补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人,“优秀”25万2人,26万2人,27万1人,28万1人;“称职”的销售员月销售额的中位数为:22万,众数:21万;“优秀”的销售员月销售额的中位数为:26万,众数:25万和26万;(3)由(2)知月销售额奖励标准应定为22万.“称职”和“优秀”的销售员月销售额的中位数为:22万,要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.【点睛】考查频数分布直方图、 扇形统计图、 中位数、 众数等知识, 解题的关键是灵活运用所学知识解决问题.