《2023届湖北省十堰市竹山县重点中学中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届湖北省十堰市竹山县重点中学中考数学五模试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列四个图形中既是轴对称图形,又是中心对称图形的是()ABCD2如图,把一块含有45角的直角三角板的两个顶点放在直尺的对边上如果1=20,那么2的度数是( )A30
2、B25C20D153下列各数:,sin30, ,其中无理数的个数是()A1个B2个C3个D4个4在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()年龄13141525283035其他人数30533171220923A平均数B众数C方差D标准差5如图,若ABCD,则、之间的关系为()A+=360B+=180C+=180D+=1806如图,已知BD与CE相交于点A,EDBC,AB=8,AC=12,AD=6,那么AE的长等于( )A4B9C12D167若点M(3,y1),N(4,y2)都在正比例函数y=k2x(k0)的图象上,则y1与y2的大小关系是()Ay1y2 B
3、y1y2 Cy1=y2 D不能确定8有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A2B3C4D59一次函数y=kx+k(k0)和反比例函数在同一直角坐标系中的图象大致是( )ABCD10如果t0,那么a+t与a的大小关系是( )Aa+ta Ba+ta Ca+ta D不能确定二、填空题(共7小题,每小题3分,满分21分)11如图,点A、B、C是O上的三点,且AOB是正三角形,则ACB的度数是 。12某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m同时测得旗杆在阳光下的影长为30m,则
4、旗杆的高为_m13轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距_km14我们知道,四边形具有不稳定性如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D处,则点C的对应点C的坐标为_15计算的结果是_16如图,AB是半圆O的直径,E是半圆上一点,且OEAB,点C为的中点,则A=_.17若mn=4,则2m24mn+2n2的值为_三、解答题(共7小题,满分69分)18(10分)某保健品厂每天生产A,B两种品牌的保健品共600
5、瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元(1)请求出y关于x的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?AB成本(元/瓶)5035利润(元/瓶)201519(5分)如图,梯形ABCD中,ADBC,DCBC,且B=45,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作FAE=45交射线BC于点E、交边DCN于点N,联结EF(1)当CM:CB=1:4
6、时,求CF的长(2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域(3)当ABMEFN时,求CM的长20(8分)如图,在ABC中,ABC=90,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE(1)求证:四边形BCFE是平行四边形;(2)当ACB=60时,求证:四边形BCFE是菱形21(10分)如图,AB为O直径,C为O上一点,点D是的中点,DEAC于E,DFAB于F(1)判断DE与O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度22(10分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件2
7、0元,设第x天(1x15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x)13610每件成本p(元)7.58.51012任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=,设李师傅第x天创造的产品利润为W元直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后统计发现平均每个工人每天创造的利润为299元工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金请计算李师傅共可获得多少元奖金?23(12分)已知抛物线y=x
8、26x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3与x轴交于点D(1)求抛物线的顶点C的坐标及A,B两点的坐标;(2)将抛物线y=x26x+9向上平移1个单位长度,再向左平移t(t0)个单位长度得到新抛物线,若新抛物线的顶点E在DAC内,求t的取值范围;(3)点P(m,n)(3m1)是抛物线y=x26x+9上一点,当PAB的面积是ABC面积的2倍时,求m,n的值24(14分)如图,直线y=kx+b(k0)与双曲线y=(m0)交于点A(,2),B(n,1)求直线与双曲线的解析式点P在x轴上,如果SABP=3,求点P的坐标参考答案一、选择题(每小题只有一
9、个正确答案,每小题3分,满分30分)1、D【解析】根据轴对称图形与中心对称图形的概念求解【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确故选D【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合2、B【解析】根据题意可知1+2+45=90,2=90145=25,3、B【解析】根据无理数的三种形式:开方开不尽的数,无限不循环小数,含有
10、的数,找出无理数的个数即可【详解】sin30=,=3,故无理数有,-,故选:B【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:开方开不尽的数,无限不循环小数,含有的数4、B【解析】分析:根据平均数的意义,众数的意义,方差的意义进行选择详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数 故选B点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用5、C【解析】过点E作EFAB,如图,易得CDEF,然后
11、根据平行线的性质可得BAE+FEA=180,C=FEC=,进一步即得结论【详解】解:过点E作EFAB,如图,ABCD,ABEF,CDEF,BAE+FEA=180,C=FEC=,FEA=,+()=180,即+=180故选:C【点睛】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EFAB、熟练掌握平行线的性质是解题的关键6、B【解析】由于EDBC,可证得ABCADE,根据相似三角形所得比例线段,即可求得AE的长【详解】EDBC,ABCADE, =, =,即AE=9;AE=9.故答案选B.【点睛】本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.7、A
12、【解析】根据正比例函数的增减性解答即可.【详解】正比例函数y=k2x(k0),k20,该函数的图象中y随x的增大而减小,点M(3,y1),N(4,y2)在正比例函数y=k2x(k0)图象上,43,y2y1,故选:A【点睛】本题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k0),当k0时, y=kx的图象经过一、三象限,y随x的增大而增大;当k0时, y=kx的图象经过二、四象限,y随x的增大而减小.8、C【解析】若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选C9、C【解析】A、由
13、反比例函数的图象在一、三象限可知k0,由一次函数的图象过二、四象限可知k0,两结论相矛盾,故选项错误; B、由反比例函数的图象在二、四象限可知k0,由一次函数的图象与y轴交点在y轴的正半轴可知k0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k0,由一次函数的图象过二、三、四象限可知k0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k0,由一次函数的图象与y轴交点在y轴的负半轴可知k0,两结论相矛盾,故选项错误,故选C10、A【解析】试题分析:根据不等式的基本性质即可得到结果.t0,ata,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟
14、练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.二、填空题(共7小题,每小题3分,满分21分)11、30【解析】试题分析:圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.AOB是正三角形AOB=60ACB=30.考点:圆周角定理点评:本题属于基础应用题,只需学生熟练掌握圆周角定理,即可完成.12、1【解析】分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可详解:=,解得:旗杆的高度=30=1 故答案为1点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题13、1
15、【解析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解【详解】解:设A港与B港相距xkm,根据题意得: ,解得:x=1,则A港与B港相距1km故答案为:1【点睛】此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程14、(2,)【解析】过C作CH于H,由题意得2AO=AD,所以DAO=60,AO=1,AD=2,勾股定理知OD=,BH=AO所以C(2,).故答案为(2,).15、1【解析】分析:利用同分母分式的减法法则计算,分子整理后分解因式,约分即可得到结果详解:原式 故答案为:1. 点睛
16、:本题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母16、22.5【解析】连接半径OC,先根据点C为的中点,得BOC=45,再由同圆的半径相等和等腰三角形的性质得:A=ACO=45,可得结论【详解】连接OC,OEAB,EOB=90,点C为的中点,BOC=45,OA=OC,A=ACO=45=22.5,故答案为:22.5【点睛】本题考查了圆周角定理与等腰三角形的性质解题的关键是注意掌握数形结合思想的应用17、1【解析】解:2m24mn+2n2=2(mn)2,当mn=4时,原式=242=1故答案为:1三、解答题(共7小题,满分69分)18、(1)y=5x+9000;(2)每
17、天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元 【解析】试题分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数A种品牌白酒一瓶的利润+B种品牌白酒瓶数B种品牌白酒一瓶的利润,列出函数关系式;(2)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数A种品牌白酒一瓶的成本+B种品牌白酒瓶数B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润(3)列出y与x的关系式,求y的最大值时,x的值.试题解析:(1)y=20x+15(600-x) =5x+9000,y关于x的函数关系式为y=
18、5x+9000;(2)根据题意,得50 x+35(600-x)26400, 解得x360, y=5x+9000,50,y随x的增大而增大,当x=360时,y有最小值为10800,每天至少获利10800元;(3) ,当x=250时,y有最大值9625,每天生产A产品250件,B产品350件获利最大,最大利润为9625元 19、 (1) CF=1;(2)y=,0x1;(3)CM=2【解析】(1)如图1中,作AHBC于H首先证明四边形AHCD是正方形,求出BC、MC的长,利用平行线分线段成比例定理即可解决问题;(2)在RtAEH中,AE2=AH2+EH2=12+(1+y)2,由EAMEBA,可得,推
19、出AE2=EMEB,由此构建函数关系式即可解决问题;(3)如图2中,作AHBC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG想办法证明CM=CN,MN=DN+HM即可解决问题;【详解】解:(1)如图1中,作AHBC于HCDBC,ADBC,BCD=D=AHC=90,四边形AHCD是矩形,AD=DC=1,四边形AHCD是正方形,AH=CH=CD=1,B=45,AH=BH=1,BC=2,CM=BC=,CMAD,=,=,CF=1(2)如图1中,在RtAEH中,AE2=AH2+EH2=12+(1+y)2,AEM=AEB,EAM=B,EAMEBA,=,AE2=EMEB,1+(1+y)2=(x+
20、y)(y+2),y=,22x0,0x1(3)如图2中,作AHBC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG则ADNAHG,MANMAG,MN=MG=HM+GH=HM+DN,ABMEFN,EFN=B=45,CF=CE,四边形AHCD是正方形,CH=CD=AH=AD,EH=DF,AHE=D=90,AHEADF,AEH=AFD,AEH=DAN,AFD=HAM,HAM=DAN,ADNAHM,DN=HM,设DN=HM=x,则MN=2x,CN=CM=x,x+x=1,x=1,CM=2【点睛】本题考查了正方形的判定与性质,平行线分线段成比例定理,勾股定理,相似三角形的判定与性质,全等三角形的判
21、定与性质.熟练运用平行线分线段成比例定理是解(1)的关键;证明EAMEBA是解(2)的关键;综合运用全等三角形的判定与性质是解(3)的关键.20、(1)见解析;(2)见解析【解析】(1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形(2)根据菱形的判定证明即可【详解】(1)证明:DE为AB,AC中点DE为ABC的中位线,DE=BC,DEBC,即EFBC,EF=BC,四边形BCEF为平行四边形(2)四边形BCEF为平行四边形,ACB=60,BC=CE=BE,四边形BCFE是菱形【点睛】本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用
22、所学知识解决问题,属于中考常考题型21、(1)DE与O相切,证明见解析;(2)AC=8.【解析】(1)解:(1)DE与O相切证明:连接OD、AD,点D是的中点,=,DAO=DAC,OA=OD,DAO=ODA,DAC=ODA,ODAE,DEAC,DEOD,DE与O相切(2) 连接BC,根据ODF与ABC相似,求得AC的长AC=822、(1)W=;(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金【解析】(1)根据题意和表格中的数据可以求得p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中
23、的结果和不等式的性质可以解答本题【详解】(1)设p与x之间的函数关系式为p=kx+b,则有,解得,即p与x的函数关系式为p=0.5x+7(1x15,x为整数),当1x10时,W=20(0.5x+7)(2x+20)=x2+16x+260,当10x15时,W=20(0.5x+7)40=20x+520,即W=;(2)当1x10时,W=x2+16x+260=(x8)2+324,当x=8时,W取得最大值,此时W=324,当10x15时,W=20x+520,当x=10时,W取得最大值,此时W=320,324320,李师傅第8天创造的利润最大,最大利润是324元;(3)当1x10时,令x2+16x+260=
24、299,得x1=3,x2=13,当W299时,3x13,1x10,3x10,当10x15时,令W=20x+520299,得x11.05,10x11,由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20(113)=160(元),即李师傅共可获得160元奖金【点睛】本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.23、(1)C(2,0),A(1,4),B(1,9);(2)t5;(2)m=,n=.【解析】分析:()将抛物线的一般式配方为顶点式即可求出点C的坐标,联立抛物线与直线的解析式即可求出A、B的坐
25、标 ()由题意可知:新抛物线的顶点坐标为(2t,1),然后求出直线AC的解析式后,将点E的坐标分别代入直线AC与AD的解析式中即可求出t的值,从而可知新抛物线的顶点E在DAC内,求t的取值范围 ()直线AB与y轴交于点F,连接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G,由直线y=x+2与x轴交于点D,与y轴交于点F,得D(2,0),F(0,2),易得CFAB,PAB的面积是ABC面积的2倍,所以ABPM=ABCF,PM=2CF=1,从而可求出PG=3,利用点G在直线y=x+2上,P(m,n),所以G(m,m+2),所以PG=n(m+2),所以n=m+4,由于P(m,n)在抛物线
26、y=x21x+9上,联立方程从而可求出m、n的值详解:(I)y=x21x+9=(x2)2,顶点坐标为(2,0) 联立, 解得:或; (II)由题意可知:新抛物线的顶点坐标为(2t,1),设直线AC的解析式为y=kx+b 将A(1,4),C(2,0)代入y=kx+b中, 解得:, 直线AC的解析式为y=2x+1 当点E在直线AC上时,2(2t)+1=1,解得:t= 当点E在直线AD上时,(2t)+2=1,解得:t=5,当点E在DAC内时,t5; (III)如图,直线AB与y轴交于点F,连接CF,过点P作PMAB于点M,PNx轴于点N,交DB于点G由直线y=x+2与x轴交于点D,与y轴交于点F,得
27、D(2,0),F(0,2),OD=OF=2 FOD=90,OFD=ODF=45 OC=OF=2,FOC=90,CF=2,OFC=OCF=45, DFC=DFO+OFC=45+45=90,CFAB PAB的面积是ABC面积的2倍,ABPM=ABCF, PM=2CF=1 PNx轴,FDO=45,DGN=45,PGM=45在RtPGM中,sinPGM=, PG=3 点G在直线y=x+2上,P(m,n), G(m,m+2) 2m1,点P在点G的上方,PG=n(m+2),n=m+4 P(m,n)在抛物线y=x21x+9上,m21m+9=n,m21m+9=m+4,解得:m= 2m1,m=不合题意,舍去,m
28、=,n=m+4= 点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识24、(1)y=2x+1;(2)点P的坐标为(,0)或(,0)【解析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合SABP=3,即可得出,解之即可得出结论【详解】(1)双曲线y=(m0)经过点A(,2),m=1双曲线的表达式为y=点B(n,1)在双曲线y=上,点B的坐标为(1,1)直线y=kx+b经过点A(,2),B(1,1),解得直线的表达式为y=2x+1;(2)当y=2x+1=0时,x=,点C(,0)设点P的坐标为(x,0),SABP=3,A(,2),B(1,1),3|x|=3,即|x|=2,解得:x1=,x2=点P的坐标为(,0)或(,0)【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及SABP=3,得出