2022-2023学年湖北省十堰市竹山县重点中学中考适应性考试数学试题含解析.doc

上传人:茅**** 文档编号:87069077 上传时间:2023-04-16 格式:DOC 页数:22 大小:866KB
返回 下载 相关 举报
2022-2023学年湖北省十堰市竹山县重点中学中考适应性考试数学试题含解析.doc_第1页
第1页 / 共22页
2022-2023学年湖北省十堰市竹山县重点中学中考适应性考试数学试题含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《2022-2023学年湖北省十堰市竹山县重点中学中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年湖北省十堰市竹山县重点中学中考适应性考试数学试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在ABC中,DEBC交AB于D,交AC于E,错误的结论是( )ABCD2二次函数(2x1)22的顶点的坐标是()A(1,2)B(1,2)C(,2)D(,2)3下列四个图形中,是中心对称图形但不是轴对称图形的是()ABCD4下列汽车标志中,不是

2、轴对称图形的是( )ABCD52的绝对值是( )A2BCD6如图,在平面直角坐标系中,直线y=k1x+2(k10)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若SOBC=1,tanBOC=,则k2的值是()A3BC3D67计算:的结果是( )ABCD8如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BEDF的是()AAECFBBEDFCEBFFDEDBEDBFD9如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()ABCD10下列各式:3+3=6;=1;+=2;=2;其中错误的有( )A3个B2个C1

3、个D0个11如果,那么( )AB CD12五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A2、40 B42、38 C40、42 D42、40二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在平面直角坐标系中,已知A(2,1),B(1,0),将线段AB绕着点B顺时针旋转90得到线段BA,则A的坐标为_14如图,正方形ABCD的边长为4,点M在边DC上,M、N 两点关于对角线AC对称,若DM=1,则tanADN= 15若点A(3,4)、B(2,m)在同一个反比例函数的图象上,则m的值为 16如图,角的一边在x轴上,另一边为射线OP

4、,点P(2,2),则tan=_17分解因式:4a3bab_18如图,函数y=(x0)的图像与直线y=-x交于A点,将线段OA绕O点顺时针旋转30,交函数y=(x0)的图像于B点,得到线段OB,若线段AB=3-,则k= _.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x(x0)

5、元,让利后的购物金额为y元(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由20(6分)如图,在四边形ABCD中,ABC=90,CAB=30,DEAC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长21(6分) 2018年4月份,郑州市教育局针对郑州市中小学参与课外辅导进行调查,根据学生参与课外辅导科目的数量,分成了:1科、2科、3科和4科,以下简记为:1、2、3、4,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)本次被调查的学员共有 人;在被调查者中参加“3科

6、”课外辅导的有 人(2)将条形统计图补充完整;(3)已知郑州市中小学约有24万人,那么请你估计一下参与辅导科目不多于2科的学生大约有多少人22(8分)如图所示是一幢住房的主视图,已知:,房子前后坡度相等,米,米,设后房檐到地面的高度为米,前房檐到地面的高度米,求的值.23(8分)如图,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中,可知,求得_如图,在矩形的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M求证:若,求的度数 24(10分)问题提出(1).如图 1,在四边形 ABCD 中,AB=BC,AD=CD=3, BAD=BCD=90,AD

7、C=60,则四边形 ABCD 的面积为 ;问题探究(2).如图 2,在四边形 ABCD 中,BAD=BCD=90,ABC=135,AB=2 2,BC=3,在 AD、CD 上分别找一点 E、F, 使得BEF 的周长最小,作出图像即可. 25(10分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)

8、不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入投入总成本)26(12分)解分式方程: -1=27(12分)如图,已知直线与抛物线相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使POB与POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且ABQ为直角三角形,求点Q的坐标参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据平行线分线段成

9、比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DEBC,可得ADEABC,并可得:,故A,B,C正确;D错误;故选D【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质2、C【解析】试题分析:二次函数(21)2即的顶点坐标为(,2)考点:二次函数点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系3、D【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】A、是轴对称图形,不是中心对称图形; B、是轴对称图形,不是中心对称图形; C、是轴对称图形,不是中心对称图形; D、不是轴对称图形,是中心对称图形 故选D【点睛】本题考查的是中心对称

10、图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合4、C【解析】根据轴对称图形的概念求解【详解】A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误故选C【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合5、A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点2到原点的距离是2,所以2的绝对值是2,故选A6、C【解析】如图,作CHy轴于H通过解直角三角形求出点C坐标即可解决问题.【详解】解

11、:如图,作CHy轴于H由题意B(0,2), CH=1,tanBOC= OH=3,C(1,3),把点C(1,3)代入,得到k2=3,故选C【点睛】本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型7、B【解析】根据分式的运算法则即可求出答案【详解】解:原式=故选;B【点睛】本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型8、B【解析】由四边形ABCD是平行四边形,可得AD/BC,AD=BC,然后由AE=CF,EBF=FDE,BED=BFD均可判定四边形BFDE是平行四边形,则可证得BE/D

12、F,利用排除法即可求得答案【详解】四边形ABCD是平行四边形,AD/BC,AD=BC,A、AE=CF,DE=BF,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF;B、BE=DF,四边形BFDE是等腰梯形,本选项不一定能判定BE/DF;C、AD/BC,BED+EBF=180,EDF+BFD=180,EBF=FDE,BED=BFD,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF;D、AD/BC,BED+EBF=180,EDF+BFD=180,BED=BFD,EBF=FDE,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF故选B【点睛】本题考查了平

13、行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键9、C【解析】看到的棱用实线体现.故选C.10、A【解析】3+3=6,错误,无法计算; =1,错误;+=2不能计算;=2,正确.故选A.11、B【解析】试题分析:根据二次根式的性质,由此可知2-a0,解得a2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质可求解.12、D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选

14、D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.二、填空题:(本大题共6个小题,每小题4分,共24分)13、 (2,3)【解析】作ACx轴于C,作ACx轴,垂足分别为C、C,证明ABCBAC,可得OC=OB+BC=1+1=2,AC=BC=3,可得结果【详解】如图,作ACx轴于C,作ACx轴,垂足分别为C、C,点A、B的坐标分别为(-2,1)、(1,0),AC=2,BC=2+1=3,ABA=90,ABC+ABC=90,BAC+ABC=90,BAC=ABC,BA=BA,ACB=B

15、CA,ABCBAC,OC=OB+BC=1+1=2,AC=BC=3,点A的坐标为(2,3)故答案为(2,3)【点睛】此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定解决问题的关键是作辅助线构造全等三角形14、【解析】M、N两点关于对角线AC对称,所以CM=CN,进而求出CN的长度再利用ADN=DNC即可求得tanADN【详解】解:在正方形ABCD中,BC=CD=1DM=1,CM=2,M、N两点关于对角线AC对称,CN=CM=2ADBC,ADN=DNC,故答案为【点睛】本题综合考查了正方形的性质,轴对称的性质以及锐角三角函数的定义15、1【解析】设反比例函数解析式为y=,根据反比例函数图

16、象上点的坐标特征得到k=3(4)=2m,然后解关于m的方程即可【详解】解:设反比例函数解析式为y=,根据题意得k=3(4)=2m,解得m=1故答案为1考点:反比例函数图象上点的坐标特征16、 【解析】解:过P作PAx轴于点AP(2,),OA=2,PA=,tan=.故答案为点睛:本题考查了解直角三角形,正切的定义,坐标与图形的性质,熟记三角函数的定义是解题的关键17、ab(2a+1)(2a-1)【解析】先提取公因式再用公式法进行因式分解即可.【详解】4a3b- ab= ab(4a2-1)=ab(2a+1)(2a-1)【点睛】此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.18、-3【

17、解析】作ACx轴于C,BDx轴于D,AEBD于E点,设A点坐标为(3a,-a),则OC=-3a,AC=-a,利用勾股定理计算出OA=-2a,得到AOC=30,再根据旋转的性质得到OA=OB,BOD=60,易证得RtOACRtBOD,OD=AC=-a,BD=OC=-3a,于是有AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,即AE=BE,则ABE为等腰直角三角形,利用等腰直角三角形的性质得到3-=(-3a+a),求出a=1,确定A点坐标为(3,-),然后把A(3,-)代入函数y=即可得到k的值【详解】作ACx轴与C,BDx轴于D,AEBD于E点,如图,点A在直线y=-x上,可设A点坐

18、标为(3a,-a),在RtOAC中,OC=-3a,AC=-a,OA=-2a,AOC=30,直线OA绕O点顺时针旋转30得到OB,OA=OB,BOD=60,OBD=30,RtOACRtBOD,OD=AC=-a,BD=OC=-3a,四边形ACDE为矩形,AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,AE=BE,ABE为等腰直角三角形,AB=AE,即3-=(-3a+a),解得a=1,A点坐标为(3,-),而点A在函数y=的图象上,k=3(-)=-3故答案为-3【点睛】本题是反比例函数综合题:点在反比例函数图象上,则点的横纵坐标满足其解析式;利用勾股定理、旋转的性质以及等腰直角三角形的性

19、质进行线段的转换与计算三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)y1=0.85x,y2=0.75x+50 (x200),y2=x (0x200);(2)x500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x500时,到甲商场购物会更省钱【解析】(1)根据单价乘以数量,可得函数解析式;(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案【详解】(1)甲商场写出y关于x的函数解析式y1=0.85x, 乙商场写出y关于x的函数解析式y2=200+(x200)0.75=0.75x+50(x200),即y2=x(0x

20、200);(2)由y1y2,得0.85x0.75x+50,解得x500,即当x500时,到乙商场购物会更省钱;由y1=y2得0.85x=0.75x+50,即x=500时,到两家商场去购物花费一样;由y1y2,得0.85x0.75x+500,解得x500,即当x500时,到甲商场购物会更省钱;综上所述:x500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x500时,到甲商场购物会更省钱【点睛】本题考查了一次函数的应用,分类讨论是解题关键20、38+12 【解析】根据ABC=90,AE=CE,EB=12,求出AC,根据RtABC中,CAB=30,BC=12,求出根据DEAC

21、,AE=CE,得AD=DC,在RtADE中,由勾股定理求出 AD,从而得出DC的长,最后根据四边形ABCD的周长=AB+BC+CD+DA即可得出答案【详解】ABC=90,AE=CE,EB=12,EB=AE=CE=12,AC=AE+CE=24,在RtABC中,CAB=30,BC=12, DEAC,AE=CE,AD=DC,在RtADE中,由勾股定理得 DC=13,四边形ABCD的周长=AB+BC+CD+DA=【点睛】此题考查了解直角三角形,用到的知识点是解直角三角形、直角三角形斜边上的中线、勾股定理等,关键是根据有关定理和解直角三角形求出四边形每条边的长21、(1)50,10;(2)见解析.(3)

22、16.8万【解析】(1)结合条形统计图和扇形统计图中的参加“3科”课外辅导人数及百分比,求得总人数为50人;再由总人数减去参加“1科”,“2科”,“4科”课外辅导人数即可求出答案.(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,由扇形统计图可知参加“4科”课外辅导人数占比为10%,故参加“4科”课外辅导人数的有5人.(3)因为参加“1科”和“2科”课外辅导人数占比为,所以全市参与辅导科目不多于2科的人数为24 16.8(万).【详解】解:(1)本次被调查的学员共有:1530%50(人),在被调查者中参加“3科”课外辅导的有:5015205010%10(人),故答案为50,10;(2

23、)由(1)知在被调查者中参加“3科”课外辅导的有10人,在被调查者中参加“4科”课外辅导的有:5010%5(人),补全的条形统计图如右图所示;(3)24 16.8(万),答:参与辅导科目不多于2科的学生大约有16.8人【点睛】本题考察了条形统计图和扇形统计图,关键在于将两者结合起来解题.22、【解析】过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,由后坡度AB与前坡度AC相等知BAD=CAE=30,从而得出BD=2、CE=3,据此可得【详解】解:过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,房子后坡度AB与前坡度AC相等,BAD=CAE,BAC

24、=120,BAD=CAE=30,在直角ABD中,AB=4米,BD=2米,在直角ACE中,AC=6米,CE=3米,a-b=1米【点睛】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念23、阅读发现:90;(1)证明见解析;(2)100【解析】阅读发现:只要证明,即可证明拓展应用:欲证明,只要证明即可根据即可计算【详解】解:如图中,四边形ABCD是正方形,故答案为为等边三角形,为等边三角形,四边形ABCD为矩形,在和中,;,【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的

25、寻找解决问题,属于中考常考题型24、(1)3 ,(2)见解析【解析】(1)易证ABDCBD,再利用含30的直角三角形求出AB、BD的长,即可求出面积.(2)作点B关于AD的对称点B,点B关于CD的对应点B,连接BB,与AD、CD交于EF,AEF即为所求.【详解】(1)AB=BC,AD=CD=3, BAD=BCD=90,ABDCBD(HL)ADB=CDB=ADC=30,AB=SABD=四边形ABCD的面积为2SABD=(2)作点B关于AD的对称点B,点B关于CD的对应点B,连接BB,与AD、CD交于EF,BEF的周长为BE+EF+BF=BE+EF+BF=BB为最短.故此时BEF的周长最小.【点睛

26、】此题主要考查含30的直角三角形与对称性的应用,解题的关键是根据题意作出相应的图形进行求解.25、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元【解析】(1)设甲型号的产品有x万只,则乙型号的产品有(20x)万只,根据销售收入为300万元可列方程18x+12(20x)=300,解方程即可;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价成本列出W与y的一次函数,根

27、据y的范围确定出W的最大值即可【详解】(1)设甲型号的产品有x万只,则乙型号的产品有(20x)万只,根据题意得:18x+12(20x)=300,解得:x=10,则20x=2010=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20y)万只,根据题意得:13y+8.8(20y)239,解得:y15,根据题意得:利润W=(18121)y+(1280.8)(20y)=1.8y+64,当y=15时,W最大,最大值为91万元所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.考点:一元一次方程的应用;一元一次不等式

28、的应用;一次函数的应用.26、7【解析】根据分式的性质及等式的性质进行去分母,去括号,移项,合并同类项,未知数系数化为1即可.【详解】 -1=3-(x-3)=-13-x+3=-1x=7【点睛】此题主要考查分式方程的求解,解题的关键是正确去掉分母.27、解:(1);(2)存在,P(,);(1)Q点坐标为(0,-)或(0,)或(0,1)或(0,1).【解析】(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.(2)首先由抛物线的解析式求出点C的坐标,在POB和POC中,已知的条件是公共边OP,

29、若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:POC=POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=-x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.(1)分别以A、B、Q为直角顶点,分类进行讨论,找出相关的相似三角形,依据对应线段成比例进行求解即可.【详解】解:(1)把A(1,4)代入ykx6,得k2,y2x6,令y0,解得:x1,B的坐标是(1,0)A为顶点,设抛物线的解析为ya(x1)24,把B(1,0)代入得:4a40,解得a1,y(x1)24x22x1 (2)存在OBOC1,OPOP,当POBPOC时,POBPOC,此时PO平分第二象限,即PO的解析式为yx设P(m,m),则mm22m1,解得m(m0,舍),P(,) (1)如图,当Q1AB90时,DAQ1DOB,即=,DQ1,OQ1,即Q1(0,-);如图,当Q2BA90时,BOQ2DOB,即,OQ2,即Q2(0,);如图,当AQ1B90时,作AEy轴于E,则BOQ1Q1EA,即OQ124OQ1+10,OQ11或1,即Q1(0,1),Q4(0,1)综上,Q点坐标为(0,-)或(0,)或(0,1)或(0,1)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 初中数学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁