《2023届江苏省部分市区中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省部分市区中考数学全真模拟试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列事件中,必然事件是()A抛掷一枚硬币,正面朝上B打开电视,正在播放广告C体育课上,小刚跑完1000米所用时间为1分钟D袋中只有4个球,且都是红球,任意摸出一球是红球2如图,ABC中,B70,则BAC30,将ABC绕点C顺时针旋转得EDC当点B的
2、对应点D恰好落在AC上时,CAE的度数是()A30B40C50D603如果数据x1,x2,xn的方差是3,则另一组数据2x1,2x2,2xn的方差是()A3B6C12D54下列事件是确定事件的是()A阴天一定会下雨B黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C打开电视机,任选一个频道,屏幕上正在播放新闻联播D在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书5104的结果是( )A7 B7 C14 D136如图,O中,弦AB、CD相交于点P,若A30,APD70,则B等于()A30B35C40D507如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下
3、列表示a,b,c,d之间关系的式子中不正确的是( )AadbcBa+c+2b+dCa+b+14c+dDa+db+c8如图,在等腰直角三角形ABC中,C=90,D为BC的中点,将ABC折叠,使点A与点D重合,EF为折痕,则sinBED的值是( )ABCD9某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A5、6、5B5、5、6C6、5、6D5、6、610下列计算正确的是()A2a2a21B(ab)2ab2Ca2+a3a5D(a2)3a6二、填空题(本大题共6个小题,每小题3分,共18分)11计算:_12计算:-=_.1
4、3如图,已知在平行四边形ABCD中,E是边AB的中点,F在边AD上,且AF:FD=2:1,如果=,=,那么=_14如图,RtABC纸片中,C=90,AC=6,BC=8,点D在边BC 上,以AD为折痕将ABD折叠得到ABD,AB与边BC交于点E若DEB为直角三角形,则BD的长是_15使得分式值为零的x的值是_;16函数y中,自变量x的取值范围是 三、解答题(共8题,共72分)17(8分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字放回后洗匀,再从中抽取一张卡片,记录下数字请用列表法或树状图法求两次抽取的卡
5、片上的数字都是偶数的概率18(8分)如图,已知A(4,n),B(2,4)是一次函数y=kx+b的图象与反比例函数 的图象的两个交点(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及AOB的面积;(3)求方程的解集(请直接写出答案)19(8分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以 PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O(1)若AP=1,则AE= ;(2)求证:点O一定在APE的外接圆上;当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到
6、点B的运动过程中,APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值20(8分)已知一个二次函数的图象经过A(0,3),B(1,0),C(m,2m+3),D(1,2)四点,求这个函数解析式以及点C的坐标21(8分)如图所示是一幢住房的主视图,已知:,房子前后坡度相等,米,米,设后房檐到地面的高度为米,前房檐到地面的高度米,求的值.22(10分)关于x的一元二次方程x2x(m+2)0有两个不相等的实数根求m的取值范围;若m为符合条件的最小整数,求此方程的根23(12分)先化简,再求值:,其中,a、b满足24如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C求双曲
7、线解析式;点P在x轴上,如果ACP的面积为5,求点P的坐标.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】试题解析:A. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;B. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;C. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;D. 袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,符合题意.故选D.点睛:事件分为确定事件和不确定事件.必然事件和不可能事件叫做确定事件.2、C【解析】由三角形内角和定理可得ACB=80,由旋转的性质可得AC=CE,ACE=ACB=80,由等腰的性质可得
8、CAE=AEC=50【详解】B70,BAC30ACB80将ABC绕点C顺时针旋转得EDCACCE,ACEACB80CAEAEC50故选C【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键3、C【解析】【分析】根据题意,数据x1,x2,xn的平均数设为a,则数据2x1,2x2,2xn的平均数为2a,再根据方差公式进行计算:即可得到答案【详解】根据题意,数据x1,x2,xn的平均数设为a,则数据2x1,2x2,2xn的平均数为2a,根据方差公式:=3,则=4=43=12,故选C【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计
9、算即可4、D【解析】试题分析:找到一定发生或一定不发生的事件即可A、阴天一定会下雨,是随机事件;B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;D、在学校操场上向上抛出的篮球一定会下落,是必然事件故选D考点:随机事件5、C【解析】解:104=1故选C6、C【解析】分析:欲求B的度数,需求出同弧所对的圆周角C的度数;APC中,已知了A及外角APD的度数,即可由三角形的外角性质求出C的度数,由此得解解答:解:APD是APC的外角,APD=C+A;A=30,APD=70,C=APD-A=40;B=C=40;故选C7
10、、A【解析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论【详解】解:依题意,得:ba+1,ca+7,da+1A、ada(a+1)1,bca+1(a+7)6,adbc,选项A符合题意;B、a+c+2a+(a+7)+22a+9,b+da+1+(a+1)2a+9,a+c+2b+d,选项B不符合题意;C、a+b+14a+(a+1)+142a+15,c+da+7+(a+1)2a+15,a+b+14c+d,选项C不符合题意;D、a+da+(a+1)2a+1,b+ca+1+(a+7)2a+1,a+db+c,选项D不符合题意故选:A【点睛】考查了列代数式,利用含
11、a的代数式表示出b,c,d是解题的关键8、A【解析】DEF是AEF翻折而成,DEFAEF,A=EDF,ABC是等腰直角三角形,EDF=45,由三角形外角性质得CDF+45=BED+45,BED=CDF,设CD=1,CF=x,则CA=CB=2,DF=FA=2-x,在RtCDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得x=,sinBED=sinCDF=故选:A9、D【解析】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(66)26;平均数是:(4256657483)206;故答案选D10、D【解析】根据合并
12、同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.【详解】A、2a2a2a2,故A错误;B、(ab)2a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3a6,故D正确,故选D【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】先把化简为2,再合并同类二次根式即可得解.【详解】2-=.故答案为.【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键12、2【解析】试题解析:原式 故答案为13、【解析】根据,只要求出、即
13、可解决问题;【详解】四边形是平行四边形,.故答案为.【点睛】本题考查的知识点是平面向量,平行四边形的性质,解题关键是表达出、.14、5或1【解析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB=5,DB=DB,接下来分为BDE=90和BED=90,两种情况画出图形,设DB=DB=x,然后依据勾股定理列出关于x的方程求解即可【详解】RtABC纸片中,C=90,AC=6,BC=8,AB=5,以AD为折痕ABD折叠得到ABD,BD=DB,AB=AB=5如图1所示:当BDE=90时,过点B作BFAF,垂足为F设BD=DB=x,则AF=6+x,FB=8-x在RtAFB中,由勾股定理得:AB5=A
14、F5+FB5,即(6+x)5+(8-x)5=55解得:x1=5,x5=0(舍去)BD=5如图5所示:当BED=90时,C与点E重合AB=5,AC=6,BE=5设BD=DB=x,则CD=8-x在RtBDE中,DB5=DE5+BE5,即x5=(8-x)5+55解得:x=1BD=1综上所述,BD的长为5或115、2【解析】根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.【详解】解:要使分式有意义则 ,即 要使分式为零,则 ,即 综上可得 故答案为2【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.16、x0且x1【解析】试题分析:根据分式有意
15、义的条件是分母不为0;分析原函数式可得关系式x-10,解可得答案试题解析:根据题意可得x-10;解得x1;故答案为x1考点: 函数自变量的取值范围;分式有意义的条件三、解答题(共8题,共72分)17、见解析,.【解析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解【详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或
16、事件B的概率18、(1)y=,y=x2(2)3(3)4x0或x2【解析】试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集试题解析:(1)B(2,4)在y=上,m=1反比例函数的解析式为y=点A(4,n)在y=上,n=2A(4,2)y=kx+b经过A(4,2
17、),B(2,4),解之得一次函数的解析式为y=x2(2)C是直线AB与x轴的交点,当y=0时,x=2点C(2,0)OC=2SAOB=SACO+SBCO=22+24=3(3)不等式的解集为:4x0或x219、(1);(2)证明见解析;(3)【解析】试题分析:(1)由正方形的性质得出A=B=EPG=90,PFEG,AB=BC=4,OEP=45,由角的互余关系证出AEP=PBC,得出APEBCP,得出对应边成比例即可求出AE的长;(2)A、P、O、E四点共圆,即可得出结论;连接OA、AC,由勾股定理求出AC=,由圆周角定理得出OAP=OEP=45,周长点O在AC上,当P运动到点B时,O为AC的中点,
18、即可得出答案;(3)设APE的外接圆的圆心为M,作MNAB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可试题解析:(1)四边形ABCD、四边形PEFG是正方形,A=B=EPG=90,PFEG,AB=BC=4,OEP=45,AEP+APE=90,BPC+APE=90,AEP=PBC,APEBCP,即,解得:AE=,故答案为:;(2)PFEG,EOF=90,EOF+A=180,A、P、O、E四点共圆,点O一定在APE的外接圆上;连接OA、AC,如图1所示:四边形ABCD是正
19、方形,B=90,BAC=45,AC=,A、P、O、E四点共圆,OAP=OEP=45,点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,即点O经过的路径长为;(3)设APE的外接圆的圆心为M,作MNAB于N,如图2所示:则MNAE,ME=MP,AN=PN,MN=AE,设AP=x,则BP=4x,由(1)得:APEBCP,即,解得:AE= =,x=2时,AE的最大值为1,此时MN的值最大=1=,即APE的圆心到AB边的距离的最大值为【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明APEBCP是解题的关键.20、y=2x2+x3,C点坐标为(,0)或(2,7)【解析】设
20、抛物线的解析式为y=ax2+bx+c,把A(0,3),B(1,0),D(1,2)代入可求出解析式,进而求出点C的坐标即可.【详解】设抛物线的解析式为y=ax2+bx+c,把A(0,3),B(1,0),D(1,2)代入得,解得,抛物线的解析式为y=2x2+x3,把C(m,2m+3)代入得2m2+m3=2m+3,解得m1=,m2=2,C点坐标为(,0)或(2,7)【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解21、【解析】过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,由
21、后坡度AB与前坡度AC相等知BAD=CAE=30,从而得出BD=2、CE=3,据此可得【详解】解:过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,房子后坡度AB与前坡度AC相等,BAD=CAE,BAC=120,BAD=CAE=30,在直角ABD中,AB=4米,BD=2米,在直角ACE中,AC=6米,CE=3米,a-b=1米【点睛】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念22、(1)m;(2)x1=0,x2=1【解析】解答本题的关键是是掌握好一元二次方程的根的判别式(1)求出5+4m0即可求出m的取值范围;(
22、2)因为m=1为符合条件的最小整数,把m=1代入原方程求解即可【详解】解:(1)1+4(m2)9+4m0(2)为符合条件的最小整数,m=2原方程变为x10,x21考点:1解一元二次方程;2根的判别式23、【解析】先根据分式混合运算顺序和运算法则化简原式,再解方程组求得a、b的值,继而代入计算可得【详解】原式=,=, =,解方程组得,所以原式=【点睛】本题主要考查分式的化简求值和解二元一次方程组,解题的关键是熟练掌握分式混合运算顺序和运算法则24、(1);(2)(,0)或【解析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出ACP的面积,可得到关于x的方程,解方程可求得P点的坐标【详解】解:(1)把A(2,n)代入直线解析式得:n=3, A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=(2)对于直线y=x+2,令y=0,得到x=-4,即C(-4,0)设P(x,0),可得PC=|x+4|ACP面积为5,|x+4|3=5,即|x+4|=2,解得:x=-或x=-,则P坐标为或