《江苏省南通市区直属中学2023届中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省南通市区直属中学2023届中考数学全真模拟试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1估计的值在( )A0到l之间B1到2之间C2到3之间D3到4之间2圆锥的底面直径是80cm,母线长90cm,则它的侧面积是ABCD3计算6m3(3m2)的结果是()A3mB2mC2mD3m4直线AB、CD相交于点O,射线OM平分AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的
2、圆与直线AB相离,那么圆P与直线CD的位置关系是()A相离B相切C相交D不确定5港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为()A35.578103B3.5578104C3.5578105D0.355781056我国作家莫言获得诺贝尔文学奖之后,他的代表作品蛙的销售量就比获奖之前增长了180倍,达到2100000册把2100000用科学记数法表示为()A0.21108B21106C2.1107D2.11067下列运算正确的是()Aa3a2=a6Ba2=C32=D(a+2)(a2)=a2+48如图所示,结论:;,其中正确的是有(
3、)A1个B2个C3个D4个9下列选项中,能使关于x的一元二次方程ax24x+c=0一定有实数根的是()Aa0Ba=0Cc0Dc=010如图,把ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MNAB,则点O是ABC的( )A外心B内心C三条中线的交点D三条高的交点二、填空题(共7小题,每小题3分,满分21分)11要使分式有意义,则x的取值范围为_12如果m,n互为相反数,那么|m+n2016|=_13如图,AB是O的直径,点E是的中点,连接AF交过E的切线于点D,AB的延长线交该切线于点C,若C30,O的半径是2,则图形中阴影部分的面积是_14如图,在平行四边AB
4、CD中,AD=2AB,F是AD的中点,作CEAB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上)DCF=BCD,(2)EF=CF;(3)SBEC=2SCEF;(4)DFE=3AEF15在函数y中,自变量x的取值范围是_16如图,ABC与DEF位似,点O为位似中心,若AC3DF,则OE:EB_17我国古代数学著作九章算术卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱问有多少人,物品的价格是多少?设有人,则可列方程为_三、解
5、答题(共7小题,满分69分)18(10分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是 ;A2B2C2的面积是 平方单位19(5分)如图,已知,求证 20(8分) “知识改变命运,科技繁荣祖国”在举办一届全市科技运动会上下图为某校2017年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:(1)该校参加航
6、模比赛的总人数是 人,空模所在扇形的圆心角的度数是 ;(2)并把条形统计图补充完整;(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖今年全市中小学参加航模比赛人数共有2500人,请你估算今年参加航模比赛的获奖人数约是多少人?21(10分)如图,AB是O的直径,点C为O上一点,CN为O的切线,OMAB于点O,分别交AC、CN于D、M两点求证:MD=MC;若O的半径为5,AC=4,求MC的长22(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5)()求二次函数的解析式及点A,B的坐标;()设点Q在第
7、一象限的抛物线上,若其关于原点的对称点Q也在抛物线上,求点Q的坐标;()若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标23(12分)如图,已知在RtABC中,ACB=90,ACBC,CD是RtABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F求证:DF是BF和CF的比例中项;在AB上取一点G,如果AEAC=AGAD,求证:EGCF=EDDF24(14分)已知关于x的方程x26mx+9m29=1(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1x2,若x1=2x2,求m
8、的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】91116,故选B.2、D【解析】圆锥的侧面积=8090=3600(cm2) .故选D3、B【解析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可【详解】6m3(3m2)=6(3)(m3m2)=2m故选B.4、A【解析】根据角平分线的性质和点与直线的位置关系解答即可【详解】解:如图所示;OM平分AOD,以点P为圆心的圆与直线AB相离,以点P为圆心的圆与直线CD相离,故选:A【点睛】此题考查直线与圆的位置关系,关键是根据角平
9、分线的性质解答5、B【解析】科学计数法是a,且,n为原数的整数位数减一【详解】解:35578= 3.5578,故选B【点睛】本题主要考查的是利用科学计数法表示较大的数,属于基础题型理解科学计数法的表示方法是解题的关键6、D【解析】2100000=2.1106.点睛:对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.7、C【解析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案【详解】A、a3a2=a5,故A选项错误;B、a2=,故B选项错误;C、32=,故C选项正确;D、(a+2)(a2)=a24,故D选项错
10、误,故选C【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键8、C【解析】根据已知的条件,可由AAS判定AEBAFC,进而可根据全等三角形得出的结论来判断各选项是否正确【详解】解:如图:在AEB和AFC中,有,AEBAFC;(AAS)FAM=EAN,EAN-MAN=FAM-MAN,即EAM=FAN;(故正确)又E=F=90,AE=AF,EAMFAN;(ASA)EM=FN;(故正确)由AEBAFC知:B=C,AC=AB;又CAB=BAC,ACNABM;(故正确)由于条件不足,无法证得CD=DN;故正确的结论有:;故选C【点睛】
11、此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难9、D【解析】试题分析:根据题意得a1且=,解得且a1观察四个答案,只有c1一定满足条件,故选D考点:根的判别式;一元二次方程的定义10、B【解析】利用平行线间的距离相等,可知点到、的距离相等,然后可作出判断.【详解】解:如图,过点作于,于,于.图1,(夹在平行线间的距离相等).如图:过点作于,作于E,作于.由题意可知: , ,图中的点是三角形三个内角的平分线的交点,点是的内心,故选B.【点睛】本题考查平行线间的距离,角平分线定理,三角形的内心,解题的关键是判断出.二、填空题(共7小题,每小题3分,满分21分)11
12、、x1【解析】由题意得x-10,x1.故答案为x1.12、1【解析】试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n1|,m,n互为相反数,m+n=0,|m+n1|=|1|=1;故答案为1考点:1.绝对值的意义;2.相反数的性质.13、【解析】首先根据切线的性质及圆周角定理得CE的长以及圆周角度数,进而利用锐角三角函数关系得出DE,AD的长,利用SADES扇形FOE图中阴影部分的面积求出即可【详解】解:连接OE,OF、EF,DE是切线,OEDE,C30,OBOE2,EOC60,OC2OE4,CEOCsin60= 点E是弧BF的中点,EABDAE30,F,E是半圆弧的三等分点,EOF
13、EOBAOF60,OEAD,DAC60,ADC90,CEAE DE,ADDEtan60= SADE FOE和AEF同底等高,FOE和AEF面积相等,图中阴影部分的面积为:SADES扇形FOE故答案为【点睛】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出FOE和AEF面积相等是解题关键14、【解析】试题解析:F是AD的中点,AF=FD,在ABCD中,AD=2AB,AF=FD=CD,DFC=DCF,ADBC,DFC=FCB,DCF=BCF,DCF=BCD,故此选项正确;延长EF,交CD延长线于M,四边形ABCD是平行四边形,ABCD,A=MDF,F为AD中点,AF=FD,在AE
14、F和DFM中,AEFDMF(ASA),FE=MF,AEF=M,CEAB,AEC=90,AEC=ECD=90,FM=EF,FC=FM,故正确;EF=FM,SEFC=SCFM,MCBE,SBEC2SEFC故SBEC=2SCEF错误;设FEC=x,则FCE=x,DCF=DFC=90-x,EFC=180-2x,EFD=90-x+180-2x=270-3x,AEF=90-x,DFE=3AEF,故此选项正确考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线15、x4【解析】试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义由题意得,考点:二次根式有意义
15、的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.16、1:2【解析】ABC与DEF是位似三角形,则DFAC,EFBC,先证明OACODF,利用相似比求得AC3DF,所以可求OE:OBDF:AC1:3,据此可得答案【详解】解:ABC与DEF是位似三角形,DFAC,EFBCOACODF,OE:OBOF:OCOF:OCDF:ACAC3DFOE:OBDF:AC1:3,则OE:EB1:2故答案为:1:2【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共线17、【解析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4
16、钱,可以列出相应的方程,本题得以解决【详解】解:由题意可设有人,列出方程: 故答案为【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程三、解答题(共7小题,满分69分)18、(1)(2,2);(2)(1,0);(3)1【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出A2B2C2的面积试题解析:(1)如图所示:C1(2,2);故答案为(2,2);(2)如图所示:C2(1,0);故答案为(1,0);(3)=20,=20,=40,A2B2C2是等腰直角
17、三角形,A2B2C2的面积是:=1平方单位故答案为1考点:1、平移变换;2、位似变换;3、勾股定理的逆定理19、见解析【解析】根据ABD=DCA,ACB=DBC,求证ABC=DCB,然后利用AAS可证明ABCDCB,即可证明结论【详解】证明:ABD=DCA,DBC=ACBABD+DBC=DCA+ACB即ABC=DCB在ABC和DCB中 ABCDCB(ASA)AB=DC【点睛】本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证ABCDCB难度不大,属于基础题20、(1)24,120;(2)见解析;(3)1000人【解析】(1)由建模的人数除以占的百分比,求出调查的总人数即
18、可,再算空模人数,即可知道空模所占百分比,从而算出对应的圆心角度数;(2)根据空模人数然后补全条形统计图;(3)根据随机取出人数获奖的人数比,即可得到结果【详解】解:(1)该校参加航模比赛的总人数是625%24(人),则参加空模人数为24(6+4+6)8(人),空模所在扇形的圆心角的度数是360120,故答案为:24,120;(2)补全条形统计图如下:(3)估算今年参加航模比赛的获奖人数约是25001000(人)【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键21、(1)证明见解析;(2)MC=.【解析】【分析】(1)连接OC,利用切线的性质证明即可;(2)
19、根据相似三角形的判定和性质以及勾股定理解答即可【详解】(1)连接OC,CN为O的切线,OCCM,OCA+ACM=90,OMAB,OAC+ODA=90,OA=OC,OAC=OCA,ACM=ODA=CDM,MD=MC;(2)由题意可知AB=52=10,AC=4,AB是O的直径,ACB=90,BC=2,AOD=ACB,A=A,AODACB,即,可得:OD=2.5,设MC=MD=x,在RtOCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=【点睛】本题考查了切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,准确添加辅助线,正确寻找相似三角形是解决问题的关键.22、(1)y
20、=x2+4x+5,A(1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M(3,8),N(2,3)【解析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,m2+4m+5),则其关于原点的对称点Q(m,m24m5),再将Q坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】()设二次函数的解析式为y=a(x2)2+9,把C(0,5)代入得到a=1,y=(x2)2+9,即y=x2+
21、4x+5,令y=0,得到:x24x5=0,解得x=1或5,A(1,0),B(5,0)()设点Q(m,m2+4m+5),则Q(m,m24m5)把点Q坐标代入y=x2+4x+5,得到:m24m5=m24m+5,m=或(舍弃),Q(,)()如图,作MK对称轴x=2于K当MK=OA,NK=OC=5时,四边形ACNM是平行四边形此时点M的横坐标为1,y=8,M(1,8),N(2,13),当MK=OA=1,KN=OC=5时,四边形ACMN是平行四边形,此时M的横坐标为3,可得M(3,8),N(2,3)【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.
22、23、证明见解析【解析】试题分析:(1)根据已知求得BDF=BCD,再根据BFD=DFC,证明BFDDFC,从而得BF:DF=DF:FC,进行变形即得;(2)由已知证明AEGADC,得到AEG=ADC=90,从而得EGBC,继而得 ,由(1)可得 ,从而得 ,问题得证.试题解析:(1)ACB=90,BCD+ACD=90,CD是RtABC的高,ADC=BDC=90,A+ACD=90,A=BCD,E是AC的中点,DE=AE=CE,A=EDA,ACD=EDC,EDC+BDF=180-BDC=90,BDF=BCD,又BFD=DFC,BFDDFC,BF:DF=DF:FC,DF2=BFCF;(2)AEAC
23、=EDDF, ,又A=A,AEGADC,AEG=ADC=90,EGBC, ,由(1)知DFDDFC, , ,EGCF=EDDF.24、 (1)见解析;(2)m=2【解析】(1)根据一元二次方程根的判别式进行分析解答即可;(2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.【详解】(1)在方程x26mx+9m29=1中,=(6m)24(9m29)=26m226m2+26=261方程有两个不相等的实数根;(2)关于x的方程:x26mx+9m29=1可化为:x(2m+2)x(2m2)=1,解得:x=2m+2和x=2m-2,2m+22m2,x1x2,x1=2m+2,x2=2m2,又x1=2x2,2m+2=2(2m2)解得:m=2【点睛】(1)熟知“一元二次方程根的判别式:在一元二次方程中,当时,原方程有两个不相等的实数根,当时,原方程有两个相等的实数根,当时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x的方程x26mx+9m29=1的两个根是解答第2小题的关键.