《2023届湖北省宜昌市长阳县中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届湖北省宜昌市长阳县中考五模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.56.5组别的频率是( )A0.1B0.2C0.3D0.42下列图形中,属于中心对称图形的是()ABCD3计算1+2+22+23+22010的结果是( )A220111B22011
2、+1CD4如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PMCD,PNBC,则线段MN的长度的最小值为( )ABCD151的相反数是()A1B1CD16李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,求证:证明:又,ABCD7如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知SAEF=4,则下列结论:;SBCE=3
3、6;SABE=12;AEFACD,其中一定正确的是()ABCD8不等式组的解集在数轴上表示为( )ABCD9已知O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与圆的位置关系是( )A相交 B相切 C相离 D无法确定10如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11春节期间,中国诗词大会)节目的播出深受观众喜爱,进一步激起了人们对古诗词的喜爱,现有以下四句古诗词:锄禾日当午;春眠不觉晓;白日依山尽;床前明月光.甲、乙两名同学从中各随机选取了一句写在纸上,则他们选取的诗句恰好相同的概率
4、为_12将多项式因式分解的结果是 13计算:=_.14如果点、是二次函数是常数图象上的两点,那么_填“”、“”或“”15已知关于x的方程x2mx40有两个相等的实数根,则实数m的值是_16如图所示,某办公大楼正前力有一根高度是15米的旗杆ED,从办公楼顶点A测得族杆顶端E的俯角是45,旗杆底端D到大楼前梯坎底端C的距离DC是20米,梯坎坡长BC是13米,梯坎坡度i=1:2.4,则大楼AB的高度的为_米三、解答题(共8题,共72分)17(8分)如图,菱形ABCD的边长为20cm,ABC120,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿AB的路线向点B运动;过点P作PQB
5、D,与AC相交于点Q,设运动时间为t秒,0t1(1)设四边形PQCB的面积为S,求S与t的关系式;(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由18(8分)如图,一次函数y1kxb(k0)和反比例函数y2(m0)的图象交于点A(1,6),B(a,2)求一次函数与反比例函数的解析式;根据图象直接写出y1y2 时,x的取值范围19(8分)(1)|2|+tan30+(
6、2018)0-()-1(2)先化简,再求值:(1),其中x的值从不等式组的整数解中选取20(8分)先化简,再求值:,其中a满足a2+2a1121(8分)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元分别求出y1,y2与x之间的关系式;当甲、乙两个商场的收费相同时,所买商品为多少件?当所买商品为5件时,应选择哪个商场更优惠?请说明理由22(10分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数
7、字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?23(12分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示当10x60时,求y关于x的函数表达式;九(1),(2)班
8、共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;若两次购买鞋子共花费9200元,求第一次的购买数量;如何规划两次购买的方案,使所花费用最少,最少多少元?24已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.求,的值;求四边形的面积.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】在5.56.5组别的频数是8,总数是40,=0.1故选B2、B【解析】A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.【详解】A、将此图形绕任意点旋转180度都不能与原图重合
9、,所以这个图形不是中心对称图形;B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形故选B.【点睛】本题考查了轴对称与中心对称图形的概念: 中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、A【解析】可设其和为S,则2S=2+22+23+24+22010+22011,两式相减可得答案.【详解】设S=1+2+22+23+22010则2S=2+22+23+22010+22011-得S=22011-1故选A.【点睛
10、】本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键4、B【解析】分析:由于点P在运动中保持APD=90,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可详解: 由于点P在运动中保持APD=90, 点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在RtQDC中,QC=, CP=QCQP=,故选B点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型解决这个问题的关键是根据圆的知识得出点P的运动轨迹5、B【解析】根据相反数的的定义解答即可
11、.【详解】根据a的相反数为-a即可得,1的相反数是1.故选B.【点睛】本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.6、B【解析】根据平行线的性质可得到两组对应角相等,易得解题步骤;【详解】证明:,又,故选B【点睛】本题考查了相似三角形的判定与性质;关键是证明三角形相似7、D【解析】在ABCD中,AO=AC,点E是OA的中点,AE=CE,ADBC,AFECBE,=,AD=BC,AF=AD,;故正确;SAEF=4, =()2=,SBCE=36;故正确; =,=,SABE=12,故正确;BF不平行于CD,AEF与ADC只有一个角相等,AEF与ACD不一定相似,故错误,故选D8、A【解析
12、】分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.【详解】解不等式得,x1;解不等式得,x2;不等式组的解集为:x2,在数轴上表示为:故选A.【点睛】本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.9、C【解析】首先求出方程的根,再利用半径长度,由点O到直线a的距离为d,若dr,则直线与与圆相离.【详解】x2-4x-12=0,(x+2)(x-6)=0,解得:x1=-2(不合题意舍去),x2=6,点O到直线l距离是方程x2-4x-12=0的一个根,即为6,点O到直线l的距离d=6,r=5,dr,直线l与圆相离.故选:C【点睛】本题
13、考核知识点:直线与圆的位置关系.解题关键点:理解直线与圆的位置关系的判定方法.10、A【解析】根据从正面看得到的图形是主视图,可得答案【详解】解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,故选:A【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】用列举法或者树状图法解答即可.【详解】解:如图,由图可得,甲乙两人选取的诗句恰好相同的概率为.故答案为:.【点睛】本题考查用树状图法或者列表法求随机事件的概率,熟练掌握两种解答方法是关键.12、m(m+n)(mn)【解析】试题分析:原式=m(m+n)(mn)故
14、答案为:m(m+n)(mn)考点:提公因式法与公式法的综合运用13、2【解析】利用平方差公式求解,即可求得答案【详解】=()2-()2=5-3=2.故答案为2.【点睛】此题考查了二次根式的乘除运算此题难度不大,注意掌握平方差公式的应用14、【解析】根据二次函数解析式可知函数图象对称轴是x=0,且开口向上,分析可知两点均在对称轴左侧的图象上;接下来,结合二次函数的性质可判断对称轴左侧图象的增减性,【详解】解:二次函数的函数图象对称轴是x=0,且开口向上,在对称轴的左侧y随x的增大而减小,-3-4,.故答案为.【点睛】本题考查了二次函数的图像和数形结合的数学思想.15、4【解析】分析:由方程有两个
15、相等的实数根,得到根的判别式等于0,列出关于m的方程,求出方程的解即可得到m的值详解:方程有两个相等的实数根, 解得: 故答案为点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.16、42【解析】延长AB交DC于H,作EGAB于G,则GH=DE=15米,EG=DH,设BH=x米,则CH=2.4x米,在RtBCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的长度,证明AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大楼AB的高度【详解】延长AB交DC于H,作EG
16、AB于G,如图所示:则GH=DE=15米,EG=DH, 梯坎坡度i=1:2.4,BH:CH=1:2.4,设BH=x米,则CH=2.4x米,在RtBCH中,BC=13米,由勾股定理得:x2+(2.4x)2=132,解得:x=5,BH=5米,CH=12米,BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),=45,EAG=90-45=45,AEG是等腰直角三角形,AG=EG=32(米),AB=AG+BG=32+10=42(米);故答案为42【点睛】本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键三、解答题(
17、共8题,共72分)17、 (1) S=2(0t1); (2) ;(3)见解析.【解析】(1)如图1,根据S=SABC-SAPQ,代入可得S与t的关系式;(2)设PM=x,则AM=2x,可得AP=x=4t,计算x的值,根据直角三角形30度角的性质可得AM=2PM=,根据AM=AO+OM,列方程可得t的值;(3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值【详解】解:(1)如图1,四边形ABCD是菱形,ABD=DBC=ABC=60,ACBD,OAB=30,AB=20,OB=10,AO=10,由题意得:AP=4t,
18、PQ=2t,AQ=2t,S=SABCSAPQ,=,= ,=2t2+100(0t1);(2)如图2,在RtAPM中,AP=4t,点Q关于O的对称点为M,OM=OQ,设PM=x,则AM=2x,AP=x=4t,x=,AM=2PM=,AM=AO+OM,=10+102t,t=;答:当t为秒时,点P、M、N在一直线上;(3)存在,如图3,直线PN平分四边形APMN的面积,SAPN=SPMN,过M作MGPN于G, ,MG=AP,易得APHMGH,AH=HM=t,AM=AO+OM,同理可知:OM=OQ=102t,t=10=102t,t=答:当t为秒时,使得直线PN平分四边形APMN的面积【点睛】考查了全等三角
19、形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.18、(1)y12x4,y2;(2)x1或0x1【解析】(1)把点A坐标代入反比例函数求出k的值,也就求出了反比例函数解析式,再把点B的坐标代入反比例函数解析式求出a的值,得到点B的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x的取值即可【详解】解:(1)把点A(1,6)代入反比例函数(m0)得:m=16=6,将B(a,2)代入得:,a=1,B(1,2),将A(1,6),B(1,2)代入一次函数y1=kx+
20、b得:,;(2)由函数图象可得:x1或0x1【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键19、(1)-1(1)-1【解析】(1)先根据根据绝对值的意义、立方根的意义、特殊角的三角函数值、零指数幂、负整数指数幂的意义化简,然后按照实数的运算法则计算即可;(1)把括号里通分,把的分子、分母分解因式约分,然后把除法转化为乘法计算;然后求出不等式组的整数解,选一个使分式有意义的值代入计算即可.【详解】(1)原式=1+3+15=1+15=1;(1)原式=,解不等式组得:-1x则不等式组的整数解为1、0、1、1,x(x+1)0且x10,x0且x1,x=1,则原式=1【点
21、睛】本题考查了实数的运算,分式的化简求值,不等式组的解法.熟练掌握各知识点是解答本题的关键,本题的易错点是容易忽视分式有意义的条件.20、a2+2a,2【解析】根据分式的减法和除法可以化简题目中的式子,然后根据a22a22,即可解答本题.【详解】解:a(a+2)a2+2a,a2+2a22,a2+2a2,原式2【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法21、(1);y2=2250x;(2)甲、乙两个商场的收费相同时,所买商品为6件;(3)所买商品为5件时,应选择乙商场更优惠【解析】试题分析:(1)由两家商场的优惠方案分别列式整理即可;(2)由收费相同,列出方程求解即可
22、;(3)由函数解析式分别求出x=5时的函数值,即可得解试题解析:(1)当x=1时,y1=3000;当x1时,y1=3000+3000(x1)(130%)=2100x+1;y2=3000x(125%)=2250x,y2=2250x;(2)当甲、乙两个商场的收费相同时,2100x+1=2250x,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y1=2100x+1=21005+1=11400,y2=2250x=22505=11250,1140011250,所买商品为5件时,应选择乙商场更优惠考点:一次函数的应用22、(1)结果见解析;(2)不公平,理由见解析.【解析】判
23、断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平23、(1)y150x; (2)第一批购买数量为30双或40双第一次买26双,第二次买74双最省钱,最少9144元【解析】(1)若购买x双(10x1),每件的单价140(购买数量10),依此可得y关于x的函数关系式;(2)设第一批购买x双,则第二批购买(100x)双,根据购买两批鞋子一共花了9200元列出方程求解即可分两种情况考虑:当25x40时,则1100x75;当40x1时,则40100x1把两次的花费与第一次购买的双数用函数表示出来【详解】解:(1)购买x双(10x1)时,y140(x10)150x故y关于x的函
24、数关系式是y150x;(2)设第一批购买x双,则第二批购买(100x)双当25x40时,则1100x75,则x(150x)+80(100x)9200,解得x130,x240;当40x1时,则40100x1,则x(150x)+(100x)150(100x)9200,解得x30或x70,但40x1,所以无解;答:第一批购买数量为30双或40双设第一次购买x双,则第二次购买(100x)双,设两次花费w元当25x40时wx(150x)+80(100x)(x35)2+9225,x26时,w有最小值,最小值为9144元;当40x1时,wx(150x)+(100x)150(100x)2(x50)2+10000,x41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解24、(1),.(2)6【解析】(1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.【详解】解:(1)点在上,点在上,且,.过,两点,解得,.(2)如图,延长,交于点,则.轴,轴,.四边形的面积为6.【点睛】考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.