《2023届江苏省泰州市泰兴市重点中学中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省泰州市泰兴市重点中学中考数学全真模拟试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1ABC的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是()A13,5B6.5,3C5,2D6.5,22剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是()ABCD3下列命题是真命题的是()A如果a+b0,那么ab0B的平方根是4C有公共顶点的两个角是对顶角
2、D等腰三角形两底角相等4舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为()A4.9951011B49.951010C0.49951011D4.99510105如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中的值是( )ABCD6如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()ABCD7某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件个,依题意列方程为( )ABCD8在同一直角坐标系中,函数y=kx-k与(k0)的图象大
3、致是 ( )ABCD9如图,已知,那么下列结论正确的是( )ABCD10某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图这5个正确答题数所组成的一组数据的中位数和众数分别是( )A10,15B13,15C13,20D15,15二、填空题(共7小题,每小题3分,满分21分)11不等式4x的解集为_12如图,以点为圆心的两个同心圆中,大圆的弦是小圆的切线,点是切点,则劣弧AB 的长为 .(结果保留)13如图,ABC中,AB17,BC10,CA21,AM平分BAC,点D、E分别为AM、AB上的动点,则BD+DE的最小值是_14若一个正n边形的每个内角为144,则这个正n边形的所有对角线的条数
4、是_.15如图所示,在菱形ABCD中,AB=4,BAD=120,AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合当点E、F在BC、CD上滑动时,则CEF的面积最大值是_16如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,则_17在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是_三、解答题(共7小题,满分69分)18(10分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其
5、图象是函数P=(0t8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8t24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)求w关于t的函数解析式;该药厂销售部门分析认为,336w513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值19(5分)如图,二次函数yx2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6)求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使
6、得CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由20(8分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.40.67,cos42.40.74,tan42.40.905,sin45.50.71,cos45.50.70,tan45.51.02)()求发射台与雷达站之间的距离;()求这枚火箭从到的平均速度是多少(结果精确到0.01)?21(10分)为响应市政府“创
7、建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用22(10分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?求出y与x之间的函数关
8、系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元23(12分)如图,在RtABC中,ABAC,D、E是斜边BC上的两点,EAD45,将ADC绕点A顺时针旋转90,得到AFB,连接EF求证:EFED;若AB2,CD1,求FE的长24(14分)如图,在大楼AB正前方有一斜坡CD,坡角DCE=30,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60,在斜坡上的D处测得楼顶B的仰角为45,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D
9、【解析】根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为,【详解】解:如下图,ABC的三条边长分别是5,13,12,且52+122=132,ABC是直角三角形,其斜边为外切圆直径,外切圆半径=6.5,内切圆半径=2,故选D.【点睛】本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.2、D【解析】根据把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心
10、对称图形,故此选项正确;故选:D【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义3、D【解析】解:A、如果a+b=0,那么a=b=0,或a=b,错误,为假命题;B、=4的平方根是2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D4、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是非负数;当原数的绝对值1时,n是负数【详解】将499.5亿用科学记数法表示为:4.9951故选D【
11、点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值5、D【解析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.6、C【解析】根据俯视图的概念可知, 只需找到从上面看所得到的图形即可.【详解】解: 从上面看易得: 有2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C.【点睛】
12、考查下三视图的概念; 主视图、 左视图、 俯视图是分别从物体正面、 左面和上面看所得到的图形;7、A【解析】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可【详解】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,由题意得,故选:A【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可8、D【解析】根据k值的正负性分别判断一次函数y=kx-k与反比例函数(k0)所经过象限,即可得出答案.【详解】解:有两种情况,当k0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数(k0)的
13、图象经过一、三象限;当k0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数(k0)的图象经过二、四象限;根据选项可知,D选项满足条件.故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键.9、A【解析】已知ABCDEF,根据平行线分线段成比例定理,对各项进行分析即可【详解】ABCDEF,故选A【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案10、D【解析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,
14、故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.二、填空题(共7小题,每小题3分,满分21分)11、x1【解析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x182x,移项合并得:3x12,解得:x1,故答案为:x1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.12、8.【解析】试题分析: 因为AB为切线,P为切点,劣弧AB所对圆心角考点: 勾股定理;垂径定理;弧长公式.13、8【解析】试题分析:过B 点作于点,与交于点,根据三角形两边之和小于第三边,可知的最小值是线的长,根据勾股定理列出方程
15、组即可求解过B 点作于点,与交于点,设AF=x,(负值舍去)故BDDE的值是8故答案为8考点:轴对称-最短路线问题14、2【解析】由正n边形的每个内角为144结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论【详解】一个正n边形的每个内角为144,144n=180(n-2),解得:n=1这个正n边形的所有对角线的条数是:= =2故答案为2【点睛】本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n边形的边数本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式求出多边形边的条数是关键15、 【解析】解:如图,连接AC,四边形A
16、BCD为菱形,BAD=120,1+EAC=60,3+EAC=60,1=3,BAD=120,ABC=60,ABC和ACD为等边三角形,4=60,AC=AB在ABE和ACF中,1=3,AC=AC,ABC=4,ABEACF(ASA),SABE=SACF,S四边形AECF=SAEC+SACF=SAEC+SABE=SABC,是定值,作AHBC于H点,则BH=2,S四边形AECF=SABC=BCAH=BC=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又SCEF=S四边形AECFSAEF,则此时CE
17、F的面积就会最大,SCEF=S四边形AECFSAEF= =故答案为:.点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据ABEACF,得出四边形AECF的面积是定值是解题的关键16、【解析】试题分析:四边形ABCD与四边形EFGH位似,位似中心点是点O,则 故答案为点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键17、 【解析】在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案【详解】在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆
18、、矩形和菱形3种,从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:.故答案为.三、解答题(共7小题,满分69分)18、(1)P=t+2;(2)当0t8时,w=240;当8t12时,w=2t2+12t+16;当12t24时,w=t2+42t+88;此范围所对应的月销售量P的最小值为12吨,最大值为19吨【解析】分析:(1)设8t24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;(2)分0t8、8t12和12t24三种情况,根据月毛利润=月销量每吨的毛利润可得函数解析式;求出8t12和12t24时,月毛利润w在满足336w513条件下t的取值范围,再根据一次函数
19、的性质可得P的最大值与最小值,二者综合可得答案详解:(1)设8t24时,P=kt+b,将A(8,10)、B(24,26)代入,得:,解得:,P=t+2;(2)当0t8时,w=(2t+8)=240;当8t12时,w=(2t+8)(t+2)=2t2+12t+16;当12t24时,w=(-t+44)(t+2)=-t2+42t+88;当8t12时,w=2t2+12t+16=2(t+3)2-2,8t12时,w随t的增大而增大,当2(t+3)2-2=336时,解题t=10或t=-16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值1
20、4;当12t24时,w=-t2+42t+88=-(t-21)2+529,当t=12时,w取得最小值448,由-(t-21)2+529=513得t=17或t=25,当12t17时,448w513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨点睛:本题主要考查二次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336w513所对应的t的取值范围是解题的关键19、(1)y=x14x+6;(1)D点的坐标为(6,0);(3)存在当点C的坐标为(4,1)时,CBD的周长最小【解析】(
21、1)只需运用待定系数法就可求出二次函数的解析式;(1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D的坐标;(3)连接CA,由于BD是定值,使得CBD的周长最小,只需CD+CB最小,根据抛物线是轴对称图形可得CA=CD,只需CA+CB最小,根据“两点之间,线段最短”可得:当点A、C、B三点共线时,CA+CB最小,只需用待定系数法求出直线AB的解析式,就可得到点C的坐标【详解】(1)把A(1,0),B(8,6)代入,得解得:二次函数的解析式为;(1)由,得二次函数图象的顶点坐标为(4,1)令y=0,得,解得:x1=1,x1=6,D点的坐标为(6,0);(3)二次函数的对称轴上存
22、在一点C,使得的周长最小连接CA,如图,点C在二次函数的对称轴x=4上,xC=4,CA=CD,的周长=CD+CB+BD=CA+CB+BD,根据“两点之间,线段最短”,可得当点A、C、B三点共线时,CA+CB最小,此时,由于BD是定值,因此的周长最小设直线AB的解析式为y=mx+n,把A(1,0)、B(8,6)代入y=mx+n,得解得:直线AB的解析式为y=x1当x=4时,y=41=1,当二次函数的对称轴上点C的坐标为(4,1)时,的周长最小【点睛】本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两
23、点之间线段最短20、 ()发射台与雷达站之间的距离约为;()这枚火箭从到的平均速度大约是.【解析】()在RtACD中,根据锐角三角函数的定义,利用ADC的余弦值解直角三角形即可;()在RtBCD和RtACD中,利用BDC的正切值求出BC的长,利用ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.【详解】()在中,0.74,.答:发射台与雷达站之间的距离约为.()在中,.在中,.答:这枚火箭从到的平均速度大约是.【点睛】本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.21、(1)购进A种树苗1棵,B种树苗2棵(2)购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元
24、【解析】(1)设购进A种树苗x棵,则购进B种树苗(12x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.【详解】解:(1)设购进A种树苗x棵,则购进B种树苗(12x)棵,根据题意得:80x+60(12x )=1220,解得:x=112x=2答:购进A种树苗1棵,B种树苗2棵(2)设购进A种树苗x棵,则购进B种树苗(12x)棵,根据题意得:12xx,解得:x8.3购进A、B两种树苗所需费用为80x+60(12x)=20x+120,是x的增函数,费用最省需x取最小整数9,此时12x=8,所需费用
25、为209+120=1200(元)答:费用最省方案为:购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元22、(1)一天可获利润2000元;(2)每件商品应降价2元或8元;当2x8时,商店所获利润不少于2160元【解析】:(1)原来一天可获利:20100=2000元;(2)y=(20-x)(100+10x)=-10(x2-10x-200),由-10(x2-10x-200)=2160,解得:x1=2,x2=8,每件商品应降价2或8元;观察图像可得23、(1)见解析;(2)EF.【解析】(1)由旋转的性质可求FAEDAE45,即可证AEFAED,可得EFED;(2)由旋转的性质可证FBE90,
26、利用勾股定理和方程的思想可求EF的长【详解】(1)BAC90,EAD45,BAE+DAC45,将ADC绕点A顺时针旋转90,得到AFB,BAFDAC,AFAD,CDBF,ABFACD45,BAF+BAE45FAE,FAEDAE,ADAF,AEAE,AEFAED(SAS),DEEF(2)ABAC2,BAC90,BC4,CD1,BF1,BD3,即BE+DE3,ABFABC45,EBF90,BF2+BE2EF2,1+(3EF)2EF2,EF【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键24、(1)坡底C点到大楼距离AC的
27、值为20米;(2)斜坡CD的长度为80-120米.【解析】分析:(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)过点D作DFAB于点F,则四边形AEDF为矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.详解:(1)在直角ABC中,BAC=90,BCA=60,AB=60米,则AC=(米)答:坡底C点到大楼距离AC的值是20米(2)过点D作DFAB于点F,则四边形AEDF为矩形,AF=DE,DF=AE.设CD=x米,在RtCDE中,DE=x米,CE=x米在RtBDF中,BDF=45,BF=DF=AB-AF=60-x(米)DF=AE=AC+CE,20+x=60-x解得:x=80-120(米)故斜坡CD的长度为(80-120)米.点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键