江苏省泰州市泰兴市黄桥教育联盟重点名校2022-2023学年中考数学全真模拟试题含解析.doc

上传人:茅**** 文档编号:88306399 上传时间:2023-04-25 格式:DOC 页数:21 大小:1.15MB
返回 下载 相关 举报
江苏省泰州市泰兴市黄桥教育联盟重点名校2022-2023学年中考数学全真模拟试题含解析.doc_第1页
第1页 / 共21页
江苏省泰州市泰兴市黄桥教育联盟重点名校2022-2023学年中考数学全真模拟试题含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《江苏省泰州市泰兴市黄桥教育联盟重点名校2022-2023学年中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省泰州市泰兴市黄桥教育联盟重点名校2022-2023学年中考数学全真模拟试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在中,则等于( )ABCD2下列图形中既是中心对称图形又是轴对称图形的是ABCD3如图,四边形ABCD是O的内接四边形,O的半径为6,ADC=60,则劣弧AC的长为()A2B4C5D64如图,将一副三角板如此摆放,使得BO和CD平行,则AOD

2、的度数为()A10B15C20D255若顺次连接四边形各边中点所得的四边形是菱形,则四边形一定是( )A矩形B菱形C对角线互相垂直的四边形D对角线相等的四边形6如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知甲的路线为:ACB;乙的路线为:ADEFB,其中E为AB的中点;丙的路线为:AIJKB,其中J在AB上,且AJJB若符号表示直线前进,则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为()A甲=乙=丙B甲乙丙C乙丙甲D丙乙甲7如图,在矩形ABCD中,AD=AB,BAD的平分线交BC于点E,DHAE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:

3、AED=CED;OE=OD;BH=HF;BCCF=2HE;AB=HF,其中正确的有( )A2个B3个C4个D5个8若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,则()Am1Bm1Cm1Dm19在下列四个标志中,既是中心对称又是轴对称图形的是()ABCD10函数y=ax2+1与(a0)在同一平面直角坐标系中的图象可能是( )ABCD11点P(1,2)关于y轴对称的点的坐标是()A(1,2)B(1,2)C(1,2)D(2,1)12已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时

4、针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;在这样连续6次旋转的过程中,点B,O间的距离不可能是()A0B0.8C2.5D3.4二、填空题:(本大题共6个小题,每小题4分,共24分)13若不等式组有解,则m的取值范围是_14一个不透明的口袋中有2个红球,1个黄球,1个白球,每个球除颜色不同外其余均相同小溪同学从口袋中随机取出两个小球,则小溪同学取出的是一个红球、一个白球的概率为_15在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原

5、有红色小球个数为_16如图,正方形ABCD中,E为AB的中点,AFDE于点O,那么等于( )A;B;C;D17有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是 18对于实数a,b,定义运算“*”:a*b=,例如:因为42,所以4*2=4242=8,则(3)*(2)=_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:(1)求购进的第一批

6、文化衫的件数;(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?20(6分)已知关于x的方程x2(m2)x(2m1)=0。求证:方程恒有两个不相等的实数根;若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。21(6分)计算:(1)12018+|2|+2cos30;(2)(a+1)2+(1a)(a+1);22(8分)在平面直角坐标系xOy中,抛物线与轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称(1)求直线BC的解析式;(2)点D在抛物线上,且

7、点D的横坐标为1将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移()个单位后与直线BC只有一个公共点,求的取值范围23(8分)如图,抛物线y=(x1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(1,0)(1)求点B,C的坐标;(2)判断CDB的形状并说明理由;(3)将COB沿x轴向右平移t个单位长度(0t3)得到QPEQPE与CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围24(10分)如图,在方格纸中.(1)请在方格纸上建立平面直角坐标系,使,并求出点坐标;(2)以原点为位

8、似中心,相似比为2,在第一象限内将放大,画出放大后的图形;(3)计算的面积.25(10分)如图,M是平行四边形ABCD的对角线上的一点,射线AM与BC交于点F,与DC的延长线交于点H(1)求证:AM2MF.MH(2)若BC2BDDM,求证:AMBADC26(12分)先化简,再求值:,其中,27(12分)计算:sin30tan60+.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得详解:在RtABC中,AB=10、AC=8,BC=,sinA=.故选:A点睛:本

9、题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义2、B【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意故选B3、B【解析】连接OA、OC,然后根据圆周角定理求得AOC的度数,最后根据弧长公式求解【详解】连接OA、OC,ADC=60,AOC=2ADC=120,则劣弧AC的长为: =4故选B【点睛

10、】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式 4、B【解析】根据题意可知,AOB=ABO=45,DOC=30,再根据平行线的性质即可解答【详解】根据题意可知AOB=ABO=45,DOC=30BOCDBOC=DCO=90AOD=BOC-AOB-DOC=90-45-30=15故选B【点睛】此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等5、C【解析】【分析】如图,根据三角形的中位线定理得到EHFG,EH=FG,EF=BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案【点睛】如图,E,F,G,H分别是

11、边AD,DC,CB,AB的中点,EH=AC,EHAC,FG=AC,FGAC,EF=BD,EHFG,EH=FG,四边形EFGH是平行四边形,假设AC=BD,EH=AC,EF=BD,则EF=EH,平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键6、A【解析】分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似而且图2三角形全等,图3三角形相似详解:根据以上分析:所以图2可得AE

12、=BE,AD=EF,DE=BE AE=BE=AB,AD=EF=AC,DE=BE=BC,甲=乙 图3与图1中,三个三角形相似,所以 = AJ+BJ=AB,AI+JK=AC,IJ+BK=BC, 甲=丙甲=乙=丙 故选A 点睛:本题考查了的知识点是平行四边形的性质,解答本题的关键是利用相似三角形的平移,求得线段的关系7、C【解析】试题分析:在矩形ABCD中,AE平分BAD,BAE=DAE=45,ABE是等腰直角三角形,AE=AB,AD=AB,AE=AD,又ABE=AHD=90ABEAHD(AAS),BE=DH,AB=BE=AH=HD,ADE=AED=(18045)=67.5,CED=1804567.

13、5=67.5,AED=CED,故正确;AHB=(18045)=67.5,OHE=AHB(对顶角相等),OHE=AED,OE=OH,OHD=9067.5=22.5,ODH=67.545=22.5,OHD=ODH,OH=OD,OE=OD=OH,故正确;EBH=9067.5=22.5,EBH=OHD,又BE=DH,AEB=HDF=45BEHHDF(ASA),BH=HF,HE=DF,故正确;由上述、可得CD=BE、DF=EH=CE,CF=CD-DF,BC-CF=(CD+HE)-(CD-HE)=2HE,所以正确;AB=AH,BAE=45,ABH不是等边三角形,ABBH,即ABHF,故错误;综上所述,结论

14、正确的是共4个故选C【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质8、C【解析】将关于x的一元二次方程化成标准形式,然后利用0,即得m的取值范围.【详解】因为方程是关于x的一元二次方程方程,所以可得,4+4m 0,解得m1,故选D.【点睛】本题熟练掌握一元二次方程的基本概念是本题的解题关键.9、C【解析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解【详解】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、

15、不是中心对称图形,是轴对称图形,故本选项错误故选C【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合10、B【解析】试题分析:分a0和a0两种情况讨论:当a0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选项图象符合;当a0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四象限,B选项图象符合故选B考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用11、C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,2)关于y轴对

16、称的点的坐标是(1,2),故选C【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.12、D【解析】如图,点O的运动轨迹是图在黄线,点B,O间的距离d的最小值为0,最大值为线段BK=,可得0d,即0d3.1,由此即可判断;【详解】如图,点O的运动轨迹是图在黄线,作CHBD于点H,六边形ABCDE是正六边形,BCD=120,CBH=30,BH=cos30 BC=,BD=.DK=,BK=,点B,O间的距离d的最小值为0,最大值为线段BK=,0d,

17、即0d3.1,故点B,O间的距离不可能是3.4,故选:D【点睛】本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】分析:解出不等式组的解集,然后根据解集的取值范围来确定m的取值范围解答:解:由1-x2得x-1又xm根据同大取大的原则可知:若不等式组的解集为x-1时,则m-1若不等式组的解集为xm时,则m-1故填m-1或m-1点评:本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知处理,求出解集再利用不等式组的解集的确定原则

18、来确定未知数的取值范围14、【解析】先画树状图求出所有等可能的结果数,再找出从口袋中随机摸出2个球,摸到的两个球是一红一白的结果数,然后根据概率公式求解【详解】解:根据题意画树状图如下:共有12种等可能的结果数,其中从口袋中随机摸出2个球,摸到的一个红球、一个白球的结果数为4,所以从口袋中随机摸出2个球,则摸到的两个球是一白一黄的概率为故答案为【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比15、20【解析】利用

19、频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.16、D【解析】利用DAO与DEA相似,对应边成比例即可求解【详解】DOA=90,DAE=90,ADE是公共角,DAO=DEADAODEA即AE=AD故选D17、1【解析】根据平均数为10求出x的值,再由众数的定义可得出答案解:由题意得,(2+3+1+1+x)=10,解得:x=

20、31,这组数据中1出现的次数最多,则这组数据的众数为1故答案为118、-1【解析】解:-3-2,(-3)*(-2)=(-3)-(-2)=-1故答案为-1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)50件;(2)120元【解析】(1)设第一批购进文化衫x件,根据数量=总价单价结合第二批每件文化衫的进价比第一批每件文化衫的进价多10元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据第二批购进的件数比第一批多40%,可求出第二批的进货数量,设该服装店销售该品牌文化衫每件的售价为y元,根据利润=销售单价销售数量-进货总价,即可得出关于y的

21、一元一次不等式,解之取其内的最小值即可得出结论【详解】解:(1)设第一批购进文化衫x件,根据题意得: +10=,解得:x=50,经检验,x=50是原方程的解,且符合题意,答:第一批购进文化衫50件;(2)第二批购进文化衫(1+40%)50=70(件),设该服装店销售该品牌文化衫每件的售价为y元,根据题意得:(50+70)y400063004100,解得:y120,答:该服装店销售该品牌文化衫每件最低售价为120元【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式20、(1)见详解;(2)

22、4或4.【解析】(1)根据关于x的方程x2(m2)x(2m1)=0的根的判别式的符号来证明结论.(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:当该直角三角形的两直角边是2、3时,当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公式进行计算.【详解】解:(1)证明:=(m2)24(2m1)=(m2)24,在实数范围内,m无论取何值,(m2)2+440,即0.关于x的方程x2(m2)x(2m1)=0恒有两个不相等的实数根.(2)此方程的一个根是1,121(m2)(2m1)=0,解得,m=2,则方程的另一

23、根为:m21=2+1=3.当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为,该直角三角形的周长为13=4.当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;则该直角三角形的周长为13=4.21、 (1)1;(2)2a+2【解析】(1)根据特殊角锐角三角函数值、绝对值的性质即可求出答案;(2)先化简原式,然后将x的值代入原式即可求出答案【详解】解:(1)原式=1+2+2=1;(2)原式=a2+2a+1+1a2=2a+2.【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型22、(1)(2)【解析】试题分析:(1)首先根据抛物

24、线求出与轴交于点A,顶点为点B的坐标,然后求出点A关于抛物线的对称轴对称点C的坐标,设设直线BC的解析式为代入点B,点C的坐标,然后解方程组即可;( 2)求出点D、E、F的坐标,设点A平移后的对应点为点,点D平移后的对应点为点当图象G向下平移至点与点E重合时, 点在直线BC上方,此时t=1;当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2从而得出.试题解析:解:(1)抛物线与轴交于点A,点A的坐标为(0,2) 1分,抛物线的对称轴为直线,顶点B的坐标为(1,) 2分又点C与点A关于抛物线的对称轴对称, 点C的坐标为(2,2),且点C在抛物线上设直线BC的解析式为直线BC经过点B(

25、1,)和点C(2,2),解得直线BC的解析式为 2分(2)抛物线中,当时,点D的坐标为(1,6) 1分直线中,当时,当时,如图,点E的坐标为(0,1),点F的坐标为(1,2)设点A平移后的对应点为点,点D平移后的对应点为点当图象G向下平移至点与点E重合时, 点在直线BC上方,此时t=1; 5分当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2 6分结合图象可知,符合题意的t的取值范围是 7分考点:1.二次函数的性质;2.待定系数法求解析式;2.平移.23、 ()B(3,0);C(0,3);()为直角三角形;().【解析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B,

26、C的坐标(2)分别求出CDB三边的长度,利用勾股定理的逆定理判定CDB为直角三角形(3)COB沿x轴向右平移过程中,分两个阶段:当0t时,如答图2所示,此时重叠部分为一个四边形;当t3时,如答图3所示,此时重叠部分为一个三角形【详解】解:()点在抛物线上,得抛物线解析式为:,令,得,;令,得或,.()为直角三角形.理由如下:由抛物线解析式,得顶点的坐标为.如答图1所示,过点作轴于点M,则,.过点作于点,则,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定理得:.,为直角三角形. ()设直线的解析式为,解得,直线是直线向右平移个单位得到,直线的解析式为:;设直线的解析式为,解得:,.

27、连续并延长,射线交交于,则.在向右平移的过程中:(1)当时,如答图2所示:设与交于点,可得,.设与的交点为,则:.解得,.(2)当时,如答图3所示:设分别与交于点、点.,.直线解析式为,令,得,.综上所述,与的函数关系式为:.24、(1)作图见解析;.(2)作图见解析;(3)1.【解析】分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;(2)利用位似图形的性质即可得出ABC;(3)直接利用(2)中图形求出三角形面积即可详解:(1)如图所示,即为所求的直角坐标系;B(2,1);(2)如图:ABC即为所求;(3)SABC=48=1点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应

28、点位置是解题的关键画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和关键点;根据位似比,确定位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形25、(1)证明见解析;(2)证明见解析.【解析】(1)由于ADBC,ABCD,通过三角形相似,找到分别于,都相等的比,把比例式变形为等积式,问题得证(2)推出,再结合,可证得答案.【详解】(1)证明:四边形是平行四边形, ,即(2)四边形是平行四边形,又,即,又,, , ,.【点睛】本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.26、9【解析】根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题【详解】 当,时,原式 【点睛】本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法27、 【解析】试题分析:把相关的特殊三角形函数值代入进行计算即可.试题解析:原式=.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁