2023届江苏省淮安市第一中学中考三模数学试题含解析.doc

上传人:lil****205 文档编号:87838372 上传时间:2023-04-18 格式:DOC 页数:18 大小:652KB
返回 下载 相关 举报
2023届江苏省淮安市第一中学中考三模数学试题含解析.doc_第1页
第1页 / 共18页
2023届江苏省淮安市第一中学中考三模数学试题含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2023届江苏省淮安市第一中学中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届江苏省淮安市第一中学中考三模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD的周长为()A20 B16 C12 D82在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )Ak1Bk0Ck1Dk13甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是( )ABCD4如图,把一块直角三角板的直角顶点放在直尺的一边上,若1=40,则2的度数为()A50B40C30D255在RtA

3、BC中,C90,那么sinB等于()ABCD6如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是 ( )A点AB点BC点CD点D7如图,ABC中,ADBC,AB=AC,BAD=30,且AD=AE,则EDC等于()A10B12.5C15D208已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为( )Ay=-x2-4x-1By=-x2-4x-2Cy=-x2+2x-1Dy=-x2+2x-29估计-1的值在( )A0到1之间B1到2之间C2到3之间D3至4之间10如图,在平面直角坐标系中,已知点A(3,6)、B(9,一3

4、),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是( )A(1,2)B(9,18)C(9,18)或(9,18)D(1,2)或(1,2)11cos30=( )ABCD12据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为()A14.4103B144102C1.44104D1.44104二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,则第2018个正方形的面积为_

5、14如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图象上,则菱形的面积为_15若一个多边形的内角和为1080,则这个多边形的边数为_16经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是_17因式分解:(a+1)(a1)2a+2_18如图, AB是O的弦,OAB=30OCOA,交AB于点C,若OC=6,则AB的长等于_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在平面直角坐标系中,抛物线与x轴交

6、于点A、B,与y轴交于点C,直线y=x+4经过点A、C,点P为抛物线上位于直线AC上方的一个动点.(1)求抛物线的表达式;(2)如图,当CP/AO时,求PAC的正切值;(3)当以AP、AO为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P的坐标.20(6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名)1323241每人月工资(元)2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有 名;(2)所有员工月工资的

7、平均数x为2500元,中位数为 元,众数为 元;(3)小张到这家公司应聘普通工作人员请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平21(6分)阅读 (1)阅读理解:如图,在ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将ACD绕着点D逆时针旋转180得到EBD),把AB,AC,2AD集中在ABE中,利用三角形三边的关系即可判断中线AD的取值范围是

8、_; (2)问题解决:如图,在ABC中,D是BC边上的中点,DEDF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CFEF; (3)问题拓展:如图,在四边形ABCD中,B+D=180,CB=CD,BCD=140,以C为顶点作一个70角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明22(8分)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF求证:AF=CE23(8分)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果)如表为装运甲、乙、丙三种水果的重量及

9、利润甲乙丙每辆汽车能装的数量(吨)423每吨水果可获利润(千元)574(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?24(10分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD求证:AB=AF;若AG=AB,BCD=1

10、20,判断四边形ACDF的形状,并证明你的结论25(10分)化简:(x7)(x6)(x2)(x1)26(12分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.27(12分)益马高速通车后,将桃江马迹塘的农

11、产品运往益阳的运输成本大大降低马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元件)如下表所示:品种AB原来的运费4525现在的运费3020(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四

12、个选项中,只有一项是符合题目要求的)1、B【解析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】四边形ABCD是平行四边形,OA=OC,AE=EB,OE=BC,AE+EO=4,2AE+2EO=8,AB+BC=8,平行四边形ABCD的周长=28=16,故选:B【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型2、A【解析】根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k10,解可得k的取值范围【详解】解:根据题意,在反比例函数图象的每一支曲线上,y都随

13、x的增大而减小,即可得k10,解得k1故选A【点评】本题考查了反比例函数的性质:当k0时,图象分别位于第一、三象限;当k0时,图象分别位于第二、四象限当k0时,在同一个象限内,y随x的增大而减小;当k0时,在同一个象限,y随x的增大而增大3、C【解析】由实际问题抽象出方程(行程问题)【分析】甲车的速度为千米/小时,则乙甲车的速度为千米/小时甲车行驶30千米的时间为,乙车行驶40千米的时间为,根据甲车行驶30千米与乙车行驶40千米所用时间相同得故选C4、A【解析】由两直线平行,同位角相等,可求得3的度数,然后求得2的度数【详解】如图,1=40,3=1=40,2=90-40=50故选A【点睛】此题

14、考查了平行线的性质利用两直线平行,同位角相等是解此题的关键5、A【解析】根据锐角三角函数的定义得出sinB等于B的对边除以斜边,即可得出答案【详解】根据在ABC中,C=90,那么sinB= =,故答案选A.【点睛】本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.6、B【解析】试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所表示的数的绝对值最小故选B7、C【解析】试题分析:根据三角形的三线合一可求得DAC及ADE的度数,根据EDC=90-ADE即可得到答案ABC中,ADBC,AB=AC,BAD=30,DAC=BAD=30,

15、AD=AE(已知),ADE=75EDC=90-ADE=15故选C考点:本题主要考查了等腰三角形的性质,三角形内角和定理点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合8、D【解析】把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式【详解】解:y=x14x5=(x+1)11,顶点坐标是(1,1)由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=x的图象上,即顶点的横纵坐标互为相反数左、右平移时,顶点的纵坐标不变,平移后的顶点坐标为(1,1),函数解析式是

16、:y=(x1)11=x1+1x1,即:y=x1+1x1故选D【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变同时考查了二次函数的性质,正比例函数y=x的图象上点的坐标特征9、B【解析】试题分析:23,1-12,即-1在1到2之间,故选B考点:估算无理数的大小10、D【解析】试题分析:方法一:ABO和ABO关于原点位似, ABOABO且 .AEAD2,OEOD1.A(1,2).同理可得A(1,2).方法二:点A(3,6)且相似比为,点A的对应点A的坐标是(3,6),A(1,2).点A和点A(1,2)关于原点O对称,A(1,2

17、).故答案选D.考点:位似变换.11、C【解析】直接根据特殊角的锐角三角函数值求解即可.【详解】故选C.【点睛】考点:特殊角的锐角三角函数点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.12、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数【详解】14400=1.441故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确

18、确定a的值以及n的值二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】先分别求出第1个、第2个、第3个正方形的面积,由此总结规律,得到第n个正方形的面积,将n=2018代入即可求出第2018个正方形的面积【详解】:第1个正方形的面积为:1+421=5=51;第2个正方形的面积为:5+42=25=52;第3个正方形的面积为:25+42=125=53;第n个正方形的面积为:5n;第2018个正方形的面积为:1故答案为1【点睛】本题考查了规律型:图形的变化类,解题的关键是得到第n个正方形的面积14、1【解析】连接AC交OB于D,由菱形的性质可知根据反比例函数中k的几何意义,得出A

19、OD的面积=1,从而求出菱形OABC的面积=AOD的面积的4倍【详解】连接AC交OB于D四边形OABC是菱形,点A在反比例函数的图象上,的面积,菱形OABC的面积=的面积=1【点睛】本题考查的知识点是菱形的性质及反比例函数的比例系数k的几何意义解题关键是反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即15、1【解析】根据多边形内角和定理:(n2)110 (n3)可得方程110(x2)1010,再解方程即可【详解】解:设多边形边数有x条,由题意得:110(x2)1010,解得:x1,故答案为:1【点睛】此题主要考查了多边形内角和定理,关键是熟练掌握计

20、算公式:(n2)110 (n3)16、【解析】根据题意,画出树状图,然后根据树状图和概率公式求概率即可【详解】解:画树状图得:共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,至少有一辆汽车向左转的概率是:故答案为:【点睛】此题考查的是求概率问题,掌握树状图的画法和概率公式是解决此题的关键17、(a1)1【解析】提取公因式(a1),进而分解因式得出答案【详解】解:(a+1)(a1)1a+1(a+1)(a1)1(a1)(a1)(a+11)(a1)1故答案为:(a1)1【点睛】此题主要考查了提取公因式法分解因式,找出公因式是解题关键18、18【解析】连接OB,OA=OB,B=A=30,COA

21、=90,AC=2OC=26=12,ACO=60,ACO=B+BOC,BOC=ACO-B=30,BOC=B,CB=OC=6,AB=AC+BC=18,故答案为18.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)抛物线的表达式为;(2);(3)P点的坐标是.【解析】分析:(1)由题意易得点A、C的坐标分别为(-1,0),(0,1),将这两点坐标代入抛物线列出方程组,解得b、c的值即可求得抛物线的解析式;(2)如下图,作PHAC于H,连接OP,由已知条件先求得PC=2,AC=,结合SAPC,可求得PH=,再由OA=OC得到CAO=15,结合CPOA可得PC

22、A=15,即可得到CH=PH=,由此可得AH=,这样在RtAPH中由tanPAC=即可求得所求答案了;(3)如图,当四边形AOPQ为符合要求的平行四边形时,则此时PQ=AO=1,且点P、Q关于抛物线的对称轴x=-1对称,由此可得点P的横坐标为-3,代入抛物线解析即可求得此时的点P的坐标.详解:(1)直线y=x+1经过点A、C,点A在x轴上,点C在y轴上A点坐标是(1,0),点C坐标是(0,1),又抛物线过A,C两点,解得,抛物线的表达式为;(2)作PHAC于H,点C、P在抛物线上,CP/AO, C(0,1),A(-1,0)P(-2,1),AC=,PC=2,PH=,A(1,0),C(0,1),C

23、AO=15.CP/AO,ACP=CAO=15,PHAC,CH=PH=,.;(3),抛物线的对称轴为直线,以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,PQAO,且PQ=AO=1 P,Q都在抛物线上,P,Q关于直线对称, P点的横坐标是3, 当x=3时,P点的坐标是.点睛:(1)解第2小题的关键是:作出如图所示的辅助线,构造出RtAPH,并结合题中的已知条件求出PH和AH的长;(2)解第3小题的关键是:根据题意画出符合要求的示意图,并由PQAO,PQ=AO及P、Q关于抛物线的对称轴对称得到点P的横坐标.【详解】请在此输入详解!20、(1)16人;(2)工中位数是1700元;众数是

24、1600元;(3)用1700元或1600元来介绍更合理些(4)能反映该公司员工的月工资实际水平【解析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=501323241=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的

25、介绍不能反映该公司员工的月工资实际水平用1700元或1600元来介绍更合理些(4)(元)能反映该公司员工的月工资实际水平21、(1)2AD8;(2)证明见解析;(3)BE+DF=EF;理由见解析.【解析】试题分析:(1)延长AD至E,使DE=AD,由SAS证明ACDEBD,得出BE=AC=6,在ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得BMDCFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在BME中,由三角形的三边关系得出BE+BMEM即可得出结论;(3)延长AB至点N,使BN=DF,连接

26、CN,证出NBC=D,由SAS证明NBCFDC,得出CN=CF,NCB=FCD,证出ECN=70=ECF,再由SAS证明NCEFCE,得出EN=EF,即可得出结论试题解析:(1)解:延长AD至E,使DE=AD,连接BE,如图所示:AD是BC边上的中线,BD=CD,在BDE和CDA中,BD=CD,BDE=CDA,DE=AD,BDECDA(SAS),BE=AC=6,在ABE中,由三角形的三边关系得:ABBEAEAB+BE,106AE10+6,即4AE16,2AD8;故答案为2AD8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图所示:同(1)得:BMDCFD(SAS),BM=CF,

27、DEDF,DM=DF,EM=EF,在BME中,由三角形的三边关系得:BE+BMEM,BE+CFEF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:ABC+D=180,NBC+ABC=180,NBC=D,在NBC和FDC中,BN=DF,NBC =D,BC=DC,NBCFDC(SAS),CN=CF,NCB=FCD,BCD=140,ECF=70,BCE+FCD=70,ECN=70=ECF,在NCE和FCE中,CN=CF,ECN=ECF,CE=CE,NCEFCE(SAS),EN=EF,BE+BN=EN,BE+DF=EF考点:全等三角形的判定和性质;三角形的三

28、边关系定理.22、证明见解析.【解析】试题分析:根据矩形的性质得出求出根据平行四边形的判定得出四边形是平行四边形,即可得出答案.试题解析:四边形ABCD是矩形, 四边形是平行四边形, 点睛:平行四边形的判定:有一组对边平行且相等的四边形是平行四边形.23、(1)乙种水果的车有2辆、丙种水果的汽车有6辆;(2)乙种水果的汽车是(m12)辆,丙种水果的汽车是(322m)辆;(3)见解析【解析】(1)根据“8辆汽车装运乙、丙两种水果共22吨到A地销售”列出方程组,即可解答;(2)设装运乙、丙水果的车分别为a辆,b辆,列出方程组即可解答;(3)设总利润为w千元,表示出w=10m+1列出不等式组确定m的

29、取值范围13m15.5,结合一次函数的性质,即可解答【详解】解:(1)设装运乙、丙水果的车分别为x辆,y辆,得: 解得:答:装运乙种水果的车有2辆、丙种水果的汽车有6辆(2)设装运乙、丙水果的车分别为a辆,b辆,得:,解得: 答:装运乙种水果的汽车是(m12)辆,丙种水果的汽车是(322m)辆(3)设总利润为w千元,w=54m+72(m12)+43(322m)=10m+113m15.5,m为正整数,m=13,14,15,在w=10m+1中,w随m的增大而增大,当m=15时,W最大=366(千元),答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366千元【点睛

30、】此题主要考查了一次函数的应用,解决本题的关键是运用函数性质求最值,需确定自变量的取值范围24、(1)证明见解析;(2)结论:四边形ACDF是矩形理由见解析.【解析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形根据对角线相等的平行四边形是矩形判断即可;【详解】(1)证明:四边形ABCD是平行四边形,BECD,AB=CD,AFC=DCG,GA=GD,AGF=CGD,AGFDGC,AF=CD,AB=CF(2)解:结论:四边形ACDF是矩形理由:AF=CD,AFCD,四边形ACDF是平行四边形,四边形ABCD是平行四边形,BAD=BCD=120,FAG=60,A

31、B=AG=AF,AFG是等边三角形,AG=GF,AGFDGC,FG=CG,AG=GD,AD=CF,四边形ACDF是矩形【点睛】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.25、2x40.【解析】原式利用多项式乘以多项式法则计算,去括号合并即可.【详解】解:原式x26x7x42x2x2x22x40.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键26、(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标【解析】试题分析:(1)设这两年

32、该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,根据题意得:700(1+x)2=1183,解得:x1=0.3=30%,x2=2.3(舍去),答:这两年该市推行绿色建筑面积的年平均增长率为30%;(2)根据题意得:1183(1+30%)=1537.9(万平方米),1537.91500,2017年该市能完成计划目标

33、【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解27、(1)每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)产品件数增加后,每次运费最少需要1120元【解析】(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据表中的数量关系列出关于x和y的二元一次方程组,解之即可,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,根据(1)的结果结合图表列出W关于m的一次函数,再根据“总件数中B产品的件数不得超过A产品件数的2倍”,列出关于m的一元一次不等

34、式,求出m的取值范围,再根据一次函数的增减性即可得到答案【详解】解:(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据题意得:,解得:,答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,根据题意得:W=30(10+m)+20(38-m)=10m+1060,由题意得:38-m2(10+m),解得:m6,即6m8,一次函数W随m的增大而增大当m=6时,W最小=1120,答:产品件数增加后,每次运费最少需要1120元【点睛】本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁