《云南省昆明市仁德一中重点中学2022-2023学年中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《云南省昆明市仁德一中重点中学2022-2023学年中考五模数学试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列命题中,真命题是( )A对角线互相垂直且相等的四边形是正方形B等腰梯形既是轴对称图形又是中心对称图形C圆的切线垂直于经过切点的半径D垂直于同一直线的两条直线互相
2、垂直2如图,点A,B,C在O上,ACB=30,O的半径为6,则的长等于()AB2C3D43如图,PA、PB切O于A、B两点,AC是O的直径,P=40,则ACB度数是()A50B60C70D804关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )A2B-2C2D-5如图,ADBC,AC平分BAD,若B40,则C的度数是()A40B65C70D806已知关于x,y的二元一次方程组的解为,则a2b的值是()A2B2C3D37已知关于x的方程2x+a-9=0的解是x=2,则a的值为A2B3C4D58将不等式组的解集在数轴上表示,下列表示中正确的是( )ABCD9如图,在平面直角
3、坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A(2017,0)B(2017,)C(2018,)D(2018,0)10在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形
4、的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为 12比较大小:_3(填“”或“”或“”)13满足的整数x的值是_14如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60方向航行,乙船沿北偏西30方向航行,半小时后甲船到达点C,乙船正好到达甲船正西方向的点B,则乙船的航程为_海里(结果保留根号).15下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2:甲乙丙丁平均数(cm)561560561560方差s2(cm2)3.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_16数据2,0,1,2,5的平均
5、数是_,中位数是_17双曲线、在第一象限的图像如图,过y2上的任意一点A,作x轴的平行线交y1于B,交y轴于C,过A作x轴的垂线交y1于D,交x轴于E,连结BD、CE,则 三、解答题(共7小题,满分69分)18(10分)现有一次函数ymx+n和二次函数ymx2+nx+1,其中m0,若二次函数ymx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式若一次函数ymx+n经过点(2,0),且图象经过第一、三象限二次函数ymx2+nx+1经过点(a,y1)和(a+1,y2),且y1y2,请求出a的取值范围若二次函数ymx2+nx+1的顶点坐标为A(h,k)(h0),同时二次函数yx2
6、+x+1也经过A点,已知1h1,请求出m的取值范围19(5分)问题探究(1)如图,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使APD为等腰三角形,那么请画出满足条件的一个等腰三角形APD,并求出此时BP的长;(2)如图,在ABC中,ABC=60,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使EQF=90,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使AMB大约为60,就可以让监控装置的效果达到最佳,已知A=E=D=90,A
7、B=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使AMB=60?若存在,请求出符合条件的DM的长,若不存在,请说明理由20(8分)为响应“植树造林、造福后人”的号召,某班组织部分同学义务植树棵,由于同学们的积极参与,实际参加的人数比原计划增加了,结果每人比原计划少栽了棵,问实际有多少人参加了这次植树活动?21(10分)在平面直角坐标系xOy中,抛物线yax2+2ax+c(其中a、c为常数,且a0)与x轴交于点A(3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为1(1)求抛物线的表达式;(2)求CAB的正切值;(3)如果点P是x轴上的一点,且ABP
8、CAO,直接写出点P的坐标22(10分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC17.2米,设太阳光线与水平地面的夹角为,当60时,测得楼房在地面上的影长AE10米,现有一老人坐在MN这层台阶上晒太阳(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当45时,问老人能否还晒到太阳?请说明理由23(12分)先化简,后求值:,其中24(14分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PCAB,点M是OP中点(1)求证:四边形OBCP是平行四边形;(2)填空:当BOP 时,四边形AOCP是菱形;连接BP,当ABP 时,PC是O的切线参考答案
9、一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案解答:解:A、错误,例如对角线互相垂直的等腰梯形;B、错误,等腰梯形是轴对称图形不是中心对称图形;C、正确,符合切线的性质;D、错误,垂直于同一直线的两条直线平行故选C2、B【解析】根据圆周角得出AOB60,进而利用弧长公式解答即可【详解】解:ACB30,AOB60,的长2,故选B【点睛】此题考查弧长的计算,关键是根据圆周角得出AOB603、C【解析】连接BC,根据题意PA,PB是圆的切线以及可得的度数,然后根据,可得的度数,因为是圆的直径,所以,
10、根据三角形内角和即可求出的度数。【详解】连接BC.PA,PB是圆的切线在四边形中,所以是直径故答案选C.【点睛】本题主要考察切线的性质,四边形和三角形的内角和以及圆周角定理。4、B【解析】根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+10,再解即可【详解】由题意得:m2-3=1,且m+10,解得:m=-2,故选:B【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k0)的自变量指数为1,当k0时,y随x的增大而减小5、C【解析】根据平行线性质得出B+BAD180,CDAC,求出BAD,求出DAC,即可得出C的度数【详解】解:ADBC,B+BAD18
11、0,B40,BAD140,AC平分DAB,DACBAD70,ABC,CDAC70,故选C【点睛】本题考查了平行线性质和角平分线定义,关键是求出DAC或BAC的度数6、B【解析】把代入方程组得:,解得:,所以a2b=2()=2.故选B.7、D【解析】方程2x+a9=0的解是x=2,22+a9=0,解得a=1故选D8、B【解析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可解:不等式可化为:,即在数轴上可表示为故选B“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(,向右画;,向左画),在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示9
12、、C【解析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为20176=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题【详解】解:正六边形ABCDEF一共有6条边,即6次一循环;20176=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,点F滚动2107次时的纵坐标与相同,横坐标的次数加1,点F滚动2107次时的横坐标为2017+1=2018,纵坐标为,点F滚动2107次时的坐标为(2018
13、,),故选C【点睛】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型10、C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C二、填空题(共7小题,每小题3分,满分21分)11、6【解析】分析:菱形的两条对角线的长分别是6和4,A(3,2).点A在反比例函数的图象上,解得k=6.【详解】请在此输入详解!12、.【解析】先利用估值的方法先得到3.4,再进行比较即可.【详解】解:3.4,3.43.3.故答案为:.【点睛】本题考查了实数的比较大小,对进行合理估值是解题的关键.
14、13、3,1【解析】直接得出23,15,进而得出答案【详解】解:23,15,的整数x的值是:3,1故答案为:3,1【点睛】此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键14、10海里【解析】本题可以求出甲船行进的距离AC,根据三角函数就可以求出AB,即可求出乙船的路程【详解】由已知可得:AC=600.5=30海里,又甲船以60海里/时的速度沿北偏东60方向航行,乙船沿北偏西30,BAC=90,又乙船正好到达甲船正西方向的B点,C=30,AB=ACtan30=30=10海里答:乙船的路程为10海里故答案为10海里【点睛】本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定
15、义,理解方向角的定义是解决本题的关键15、甲【解析】首先比较平均数,平均数相同时选择方差较小的运动员参加【详解】 ,从甲和丙中选择一人参加比赛, ,选择甲参赛,故答案为甲【点睛】此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立16、0.8 0 【解析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数【详解】平均数=(2+01+2+5)5=0.8;把这组数据按从大到小的顺序排
16、列是:5,2,0,-1,-2,故这组数据的中位数是:0.故答案为0.8;0.【点睛】本题考查了平均数与中位数的定义,解题的关键是熟练的掌握平均数与中位数的定义.17、【解析】设A点的横坐标为a,把x=a代入得,则点A的坐标为(a,)ACy轴,AEx轴,C点坐标为(0,),B点的纵坐标为,E点坐标为(a,0),D点的横坐标为aB点、D点在上,当y=时,x=;当x=a,y=B点坐标为(,),D点坐标为(a,)AB=a=,AC=a,AD=,AE=AB=AC,AD=AE又BAD=CAD,BADCAD三、解答题(共7小题,满分69分)18、(1)yx2,y=x2+1;(2)a;(3)m2或m1【解析】(
17、1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,1)代入一次函数解析式,得到n2m,利用m与n的关系能求出二次函数对称轴x1,由一次函数经过一、三象限可得m1,确定二次函数开口向上,此时当 y1y2,只需让a到对称轴的距离比a1到对称轴的距离大即可求a的范围(3)将A(h,k)分别代入两个二次函数解析式,再结合对称抽得h,将得到的三个关系联立即可得到,再由题中已知1h1,利用h的范围求出m的范围【详解】(1)将点(2,1),(3,1),代入一次函数ymx+n中,解得,一次函数的解析式是yx2,再将点(2,1),(3,1),代入二次函数ymx2+nx+1,解得,二次函数
18、的解析式是(2)一次函数ymx+n经过点(2,1),n2m,二次函数ymx2+nx+1的对称轴是x,对称轴为x1,又一次函数ymx+n图象经过第一、三象限,m1,y1y2,1a1+a1,a(3)ymx2+nx+1的顶点坐标为A(h,k),kmh2+nh+1,且h,又二次函数yx2+x+1也经过A点,kh2+h+1,mh2+nh+1h2+h+1,又1h1,m2或m1【点睛】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法19、(1)1;2-;(1)4+;(4)(200-25-40)米【解析】(1)由于PAD是等
19、腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题(1)以EF为直径作O,易证O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长(4)要满足AMB=40,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长【详解】(1)作AD的垂直平分线交BC于点P,如图,则PA=PDPAD是等腰三角形四边形ABCD是矩形,AB=DC,B=C=90PA=PD,AB=DC,RtABPRtDCP(HL)BP=C
20、PBC=2,BP=CP=1以点D为圆心,AD为半径画弧,交BC于点P,如图,则DA=DPPAD是等腰三角形四边形ABCD是矩形,AD=BC,AB=DC,C=90AB=4,BC=2,DC=4,DP=2CP=BP=2-点A为圆心,AD为半径画弧,交BC于点P,如图,则AD=APPAD是等腰三角形同理可得:BP=综上所述:在等腰三角形ADP中,若PA=PD,则BP=1;若DP=DA,则BP=2-;若AP=AD,则BP=(1)E、F分别为边AB、AC的中点,EFBC,EF=BCBC=11,EF=4以EF为直径作O,过点O作OQBC,垂足为Q,连接EQ、FQ,如图ADBC,AD=4,EF与BC之间的距离
21、为4OQ=4OQ=OE=4O与BC相切,切点为QEF为O的直径, EQF=90过点E作EGBC,垂足为G,如图EGBC,OQBC,EGOQEOGQ,EGOQ,EGQ=90,OE=OQ,四边形OEGQ是正方形GQ=EO=4,EG=OQ=4B=40,EGB=90,EG=4,BG=BQ=GQ+BG=4+当EQF=90时,BQ的长为4+(4)在线段CD上存在点M,使AMB=40理由如下:以AB为边,在AB的右侧作等边三角形ABG,作GPAB,垂足为P,作AKBG,垂足为K设GP与AK交于点O,以点O为圆心,OA为半径作O,过点O作OHCD,垂足为H,如图则O是ABG的外接圆,ABG是等边三角形,GPA
22、B,AP=PB=AB AB=170,AP=145ED=185,OH=185-145=6ABG是等边三角形,AKBG,BAK=GAK=40OP=APtan40=145=25OA=1OP=90OHOAO与CD相交,设交点为M,连接MA、MB,如图AMB=AGB=40,OM=OA=90OHCD,OH=6,OM=90,HM=40AE=200,OP=25,DH=200-25若点M在点H的左边,则DM=DH+HM=200-25+40200-25+40420,DMCD点M不在线段CD上,应舍去若点M在点H的右边,则DM=DH-HM=200-25-40200-25-40420,DMCD点M在线段CD上综上所述
23、:在线段CD上存在唯一的点M,使AMB=40,此时DM的长为(200-25-40)米【点睛】本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强而构造等边三角形及其外接圆是解决本题的关键20、人【解析】解:设原计划有x人参加了这次植树活动 依题意得: 解得 x=30人 经检验x=30是原方程式的根 实际参加了这次植树活动1.5x=45人 答实际有45人参加了这次植树活动21、(4)yx44x+3;(4);(3)点P的坐标是
24、(4,0)【解析】(4) 先求得抛物线的对称轴方程, 然后再求得点C的坐标,设抛物线的解析式为ya(x+4)4+4,将点 (-3, 0) 代入求得a的值即可;(4) 先求得A、 B、 C的坐标, 然后依据两点间的距离公式可得到BC、AB,AC的长,然后依据勾股定理的逆定理可证明ABC=90,最后,依据锐角三角函数的定义求解即可;(3) 连接BC,可证得AOB是等腰直角三角形,ACBBPO,可得代入个数据可得OP的值,可得P点坐标.【详解】解:(4)由题意得,抛物线yax4+4ax+c的对称轴是直线,a0,抛物线开口向下,又与x轴有交点,抛物线的顶点C在x轴的上方,由于抛物线顶点C到x轴的距离为
25、4,因此顶点C的坐标是(4,4)可设此抛物线的表达式是ya(x+4)4+4,由于此抛物线与x轴的交点A的坐标是(3,0),可得a4因此,抛物线的表达式是yx44x+3(4)如图4,点B的坐标是(0,3)连接BCAB434+3448,BC444+444,AC444+4440,得AB4+BC4AC4ABC为直角三角形,ABC90,所以tanCAB=即CAB的正切值等于(3)如图4,连接BC,OAOB3,AOB90,AOB是等腰直角三角形,BAPABO45,CAOABP,CABOBP,ABCBOP90,ACBBPO,OP4,点P的坐标是(4,0)【点睛】本题主要考查二次函数的图像与性质,综合性大.2
26、2、(1)楼房的高度约为17.3米;(2)当45时,老人仍可以晒到太阳理由见解析.【解析】试题分析:(1)在RtABE中,根据的正切值即可求得楼高;(2)当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大楼的影子落在台阶MC这个侧面上.即小猫仍可晒到太阳.试题解析:解:(1)当当时,在RtABE中,,BA=10tan60=米.即楼房的高度约为17.3米.当时,小猫仍可晒到太阳.理由如下:假设没有台阶,当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.BFA=45,,此时的
27、影长AF=BA=17.3米,所以CF=AF-AC=17.3-17.2=0.1.CH=CF=0.1米,大楼的影子落在台阶MC这个侧面上.小猫仍可晒到太阳.考点:解直角三角形.23、, 【解析】分析:先把分值分母因式分解后约分,再进行通分得到原式=,然后把x的值代入计算即可详解:原式=1 = =当x=+1时,原式=点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值24、 (1)见解析;(2)120;45【解析】(1)由AAS证明CPMAOM,得出PC=OA,得出PC=OB,即可得出结论;(2)证出OA=OP=PA,得出AOP是等边三角形,A=AOP=60,得出
28、BOP=120即可;由切线的性质和平行线的性质得出BOP=90,由等腰三角形的性质得出ABP=OPB=45即可【详解】(1)PCAB,PCMOAM,CPMAOM点M是OP的中点,OMPM,在CPM和AOM中,CPMAOM(AAS),PCOAAB是半圆O的直径,OAOB,PCOB又PCAB,四边形OBCP是平行四边形(2)四边形AOCP是菱形,OAPA,OAOP,OAOPPA,AOP是等边三角形,AAOP60,BOP120;故答案为120;PC是O的切线,OPPC,OPC90,PCAB,BOP90,OPOB,OBP是等腰直角三角形,ABPOPB45,故答案为45【点睛】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键