上海市行知中学2022-2023学年高考数学二模试卷含解析.doc

上传人:茅**** 文档编号:87837029 上传时间:2023-04-18 格式:DOC 页数:19 大小:1.87MB
返回 下载 相关 举报
上海市行知中学2022-2023学年高考数学二模试卷含解析.doc_第1页
第1页 / 共19页
上海市行知中学2022-2023学年高考数学二模试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《上海市行知中学2022-2023学年高考数学二模试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海市行知中学2022-2023学年高考数学二模试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

2、1已知是边长为的正三角形,若,则ABCD2要得到函数的导函数的图像,只需将的图像( )A向右平移个单位长度,再把各点的纵坐标伸长到原来的3倍B向右平移个单位长度,再把各点的纵坐标缩短到原来的倍C向左平移个单位长度,再把各点的纵坐标缩短到原来的倍D向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍3函数的图象如图所示,为了得到的图象,可将的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位4双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为( )ABCD5已知 若在定义域上恒成立,则的取值范围是( )ABCD6M、N是曲线y=sin

3、x与曲线y=cosx的两个不同的交点,则|MN|的最小值为()ABCD27双曲线的渐近线方程为( )ABCD8如图,双曲线的左,右焦点分别是直线与双曲线的两条渐近线分别相交于两点.若则双曲线的离心率为( )ABCD9已知,为两条不同直线,为三个不同平面,下列命题:若,则;若,则;若,则;若,则.其中正确命题序号为( )ABCD10已知,则( )A5BC13D11若的展开式中的常数项为-12,则实数的值为( )A-2B-3C2D312下图为一个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13将底面直径为

4、4,高为的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为_.14西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为_15已知数列的前项和公式为,则数列的通项公式为_16下图是一个算法流程图,则输出的S的值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,其中e为自然对数的底数.(1)讨论函数的单调性;(2)用表示中较大

5、者,记函数.若函数在上恰有2个零点,求实数a的取值范围.18(12分)在平面直角坐标系xOy中,已知平行于x轴的动直线l交抛物线C:于点P,点F为C的焦点圆心不在y轴上的圆M与直线l,PF,x轴都相切,设M的轨迹为曲线E(1)求曲线E的方程;(2)若直线与曲线E相切于点,过Q且垂直于的直线为,直线,分别与y轴相交于点A,当线段AB的长度最小时,求s的值19(12分)设函数.(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.20(12分)设函数.(1)若恒成立,求整数的最大值;(2)求证:.21(12分)如图,在三棱柱中,是边长为2的菱形,且,是矩形,且平面平面,点在线段上移动(不与重

6、合),是的中点.(1)当四面体的外接球的表面积为时,证明:.平面(2)当四面体的体积最大时,求平面与平面所成锐二面角的余弦值.22(10分)已知分别是的内角的对边,且()求()若,求的面积()在()的条件下,求的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由可得,因为是边长为的正三角形,所以,故选A2、D【解析】先求得,再根据三角函数图像变换的知识,选出正确选项.【详解】依题意,所以由向左平移个单位长度,再把各点的纵坐标伸长到原来的3倍得到的图像.故选:D【点睛】本小题主要考查复合函数导数的计算,考查诱导公式,考

7、查三角函数图像变换,属于基础题.3、C【解析】根据正弦型函数的图象得到,结合图像变换知识得到答案.【详解】由图象知:,.又时函数值最大,所以.又,从而,只需将的图象向左平移个单位即可得到的图象,故选C.【点睛】已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求4、A【解析】根据题意得到,化简得到,得到答案.【详解】根据题意知:焦点到渐近线的距离为,故,故渐近线为.故选:.【点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.5、C【解析】先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域

8、上恒成立,可得出关于的不等式,即可解得实数的取值范围.【详解】,先解不等式.当时,由,得,解得,此时;当时,由,得.所以,不等式的解集为.下面来求函数的值域.当时,则,此时;当时,此时.综上所述,函数的值域为,由于在定义域上恒成立,则不等式在定义域上恒成立,所以,解得.因此,实数的取值范围是.故选:C.【点睛】本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.6、C【解析】两函数的图象如图所示,则图中|MN|最小,设M(x1,y1),N(x2,y2),则x1=,x2=,|x1-x2|=,|y1-y2|=|sinx1-cosx2|=+=,

9、|MN|=.故选C.7、C【解析】根据双曲线的标准方程,即可写出渐近线方程.【详解】 双曲线,双曲线的渐近线方程为,故选:C【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.8、A【解析】易得,过B作x轴的垂线,垂足为T,在中,利用即可得到的方程.【详解】由已知,得,过B作x轴的垂线,垂足为T,故,又所以,即,所以双曲线的离心率.故选:A.【点睛】本题考查双曲线的离心率问题,在作双曲线离心率问题时,最关键的是找到的方程或不等式,本题属于容易题.9、C【解析】根据直线与平面,平面与平面的位置关系进行判断即可.【详解】根据面面平行的性质以及判定定理可得,若,则,故正确;若,平面可能相交,故错

10、误;若,则可能平行,故错误;由线面垂直的性质可得,正确;故选:C【点睛】本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.10、C【解析】先化简复数,再求,最后求即可.【详解】解:,故选:C【点睛】考查复数的运算,是基础题.11、C【解析】先研究的展开式的通项,再分中,取和两种情况求解.【详解】因为的展开式的通项为,所以的展开式中的常数项为:,解得,故选:C.【点睛】本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题.12、C【解析】将正四面体的展开图还原为空间几何体,三点重合,记作,取中点,连接,即为与直线所成的角,表示出三角形的三条边长,用余弦定理即可求得.

11、【详解】将展开的正四面体折叠,可得原正四面体如下图所示,其中三点重合,记作:则为中点,取中点,连接,设正四面体的棱长均为,由中位线定理可得且,所以即为与直线所成的角, ,由余弦定理可得,所以直线与直线所成角的余弦值为,故选:C.【点睛】本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,将侧面积表示成关于的函数,再利用一元二次函数的性质求最值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,

12、底面半径为r,则,所以.,当时,的最大值为.故答案为:.【点睛】本题考查圆柱的侧面积的最值,考查函数与方程思想、转化与化归思想、,考查空间想象能力和运算求解能力,求解时注意将问题转化为函数的最值问题.14、【解析】由组合数结合古典概型求解即可【详解】从11个数中随机抽取3个数有种不同的方法,其中能构成勾股数的有共三种,所以,所求概率为.故答案为【点睛】本题考查古典概型与数学文化,考查组合问题,数据处理能力和应用意识.15、【解析】由题意,根据数列的通项与前n项和之间的关系,即可求得数列的通项公式【详解】由题意,可知当时,;当时,. 又因为不满足,所以.【点睛】本题主要考查了利用数列的通项与前n

13、项和之间的关系求解数列的通项公式,其中解答中熟记数列的通项与前n项和之间的关系,合理准确推导是解答的关键,着重考查了推理与运算能力,属于基础题16、【解析】根据流程图,运行程序即得.【详解】第一次运行,;第二次运行,;第三次运行,;第四次运行;所以输出的S的值是.故答案为:【点睛】本题考查算法流程图,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)函数的单调递增区间为和,单调递减区间为;(2).【解析】(1)由题可得,结合的范围判断的正负,即可求解;(2)结合导数及函数的零点的判定定理,分类讨论进行求解【详解】(1),当时,函数在内单调递增;当时,令,解得或

14、,当或时,则单调递增,当时,则单调递减,函数的单调递增区间为和,单调递减区间为(2)()当时,所以在上无零点;()当时,若,即,则是的一个零点;若,即,则不是的零点()当时,所以此时只需考虑函数在上零点的情况,因为,所以当时,在上单调递增。又,所以()当时,在上无零点;()当时,又,所以此时在上恰有一个零点; 当时,令,得,由,得;由,得,所以在上单调递减,在上单调递增,因为,所以此时在上恰有一个零点,综上,【点睛】本题考查利用导数求函数单调区间,考查利用导数处理零点个数问题,考查运算能力,考查分类讨论思想18、(1),(2)【解析】根据题意设,可得PF的方程,根据距离即可求出;点Q处的切线的

15、斜率存在,由对称性不妨设,根据导数的几何意义和斜率公式,求,并构造函数,利用导数求出函数的最值【详解】因为抛物线C的方程为,所以F的坐标为,设,因为圆M与x轴、直线l都相切,l平行于x轴,所以圆M的半径为,点,则直线PF的方程为,即,所以,又m,所以,即,所以E的方程为,设,由知,点Q处的切线的斜率存在,由对称性不妨设,由,所以,所以,所以,令,则,由得,由得,所以在区间单调递减,在单调递增,所以当时,取得极小值也是最小值,即AB取得最小值此时【点睛】本题考查了直线和抛物线的位置关系,以及利用导数求函数最值的关系,考查了运算能力和转化能力,属于难题19、(1)或;(2)或.【解析】试题分析:(

16、1)根据绝对值定义将不等式化为三个不等式组,分别求解集,最后求并集(2)根据绝对值三角不等式得最小值,再解含绝对值不等式可得的取值范围.试题解析:(1)等价于或或,解得:或.故不等式的解集为或.(2)因为:所以,由题意得:,解得或.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向20、(1)整数的最大值为;(2)见解析.【解析】(1)将不等式变形为,构造函数,利用导数研究函数的单调性并

17、确定其最值,从而得到正整数的最大值;(2)根据(1)的结论得到,利用不等式的基本性质可证得结论.【详解】(1)由得,令,令,对恒成立,所以,函数在上单调递增,故存在使得,即,从而当时,有,所以,函数在上单调递增;当时,有,所以,函数在上单调递减.所以,因此,整数的最大值为;(2)由(1)知恒成立,令则,上述等式全部相加得,所以,因此,【点睛】本题考查导数在函数单调性、最值中的应用,以及放缩法证明不等式的技巧,属于难题21、(1)证明见解析(2)【解析】(1)由题意,先求得为的中点,再证明平面平面,进而可得结论;(2)由题意,当点位于点时,四面体的体积最大,再建立空间直角坐标系,利用空间向量运算

18、即可.【详解】(1)证明:当四面体的外接球的表面积为时.则其外接球的半径为.因为时边长为2的菱形,是矩形.,且平面平面.则,.则为四面体外接球的直径.所以,即.由题意,所以.因为,所以为的中点.记的中点为,连接,.则,所以平面平面.因为平面,所以平面.(2)由题意,平面,则三棱锥的高不变.当四面体的体积最大时,的面积最大.所以当点位于点时,四面体的体积最大.以点为坐标原点,建立如图所示的空间直角坐标系.则,.所以,.设平面的法向量为.则令,得.设平面的一个法向量为.则令,得.设平面与平面所成锐二面角是,则.所以当四面体的体积最大时,平面与平面所成锐二面角的余弦值为.【点睛】本题考查平面与平面的平行、线面平行,考查平面与平面所成锐二面角的余弦值,正确运用平面与平面的平行、线面平行的判定,利用好空间向量是关键,属于基础题22、();();().【解析】()由已知结合正弦定理先进行代换,然后结合和差角公式及正弦定理可求;()由余弦定理可求,然后结合三角形的面积公式可求;()结合二倍角公式及和角余弦公式即可求解【详解】()因为,所以,所以,由正弦定理可得,;()由余弦定理可得,整理可得,解可得,因为,所以;()由于,所以【点睛】本题主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面积公式的综合应用,意在考查学生对这些知识的理解掌握水平

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁