《云南曲靖市沾益区大坡乡2022-2023学年中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《云南曲靖市沾益区大坡乡2022-2023学年中考联考数学试题含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如果零上2记作2,那么零下3记作( )A3B2C3D22若分式有意义,则a的取值范围为( )Aa4Ba4Ca4Da43关于x的一元一次不等式2的解集为x4,则m的值为( )A14B7C2D24反比例函数y=的图象与直线y=x+2有两个交点,且两交
2、点横坐标的积为负数,则t的取值范围是( )At Bt Ct Dt5如图,一段抛物线:y=x(x5)(0x5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180得C2, 交x轴于点A2;将C2绕点A2旋转180得C3, 交x轴于点A3;如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为( )A4B4C6D66用配方法解方程x24x+10,配方后所得的方程是( )A(x2)23B(x+2)23C(x2)23D(x+2)237在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()年龄13141525283035其他人数305331
3、71220923A平均数B众数C方差D标准差8如图,已知ABCD,ADCD,140,则2的度数为()A60B65C70D759如图在ABC中,ACBC,过点C作CDAB,垂足为点D,过D作DEBC交AC于点E,若BD6,AE5,则sinEDC的值为()ABCD10已知二次函数(为常数),当时,函数的最小值为5,则的值为()A1或5B1或3C1或5D1或3二、填空题(本大题共6个小题,每小题3分,共18分)11如图,点A是双曲线y在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰ABC,且ACB120,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双
4、曲线y上运动,则k的值为_12如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则PAB的面积是_13数学的美无处不在数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐例如,三根弦长度之比是15:12:10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so,研究15、12、10这三个数的倒数发现:我们称15、12、10这三个数为一组调和数现有一组调和数:x,5,3(x5),则x的值是14的算术平方根是_.15定义一种新运算:x*y=,如2*1=3,则(4
5、*2)*(1)=_16因式分解:a32a2b+ab2=_三、解答题(共8题,共72分)17(8分)先化简,再求值:(),其中a=+118(8分)先化简:(),再从2,1,0,1这四个数中选择一个合适的数代入求值19(8分)如图,RtABC中,C=90,O是RtABC的外接圆,过点C作O的切线交BA的延长线于点E,BDCE于点D,连接DO交BC于点M.(1)求证:BC平分DBA;(2)若,求的值20(8分)如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45的方向求此时小船到B码头的距离
6、(即BP的长)和A、B两个码头间的距离(结果都保留根号)21(8分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.22(10分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩(次/分),按成绩分成,五个等级将所得数据绘制成如下统计图根据图中信息,解答下列问题:该校被抽取的男生跳绳成绩频数分布直方图(1)本次调查中,男生的跳绳成绩的中位数在_等级;(2)若该校九年级共有男生4
7、00人,估计该校九年级男生跳绳成绩是等级的人数23(12分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:说明:A级:90分100分;B级:75分89分;C级:60分74分;D级:60分以下(1)样本中D级的学生人数占全班学生人数的百分比是 ;(2)扇形统计图中A级所在的扇形的圆心角度数是 ;(3)请把条形统计图补充完整;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.24先化简,再求值:1+(1),其中x=2cos30
8、+tan45参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】“正”和“负”相对,如果零上2记作2,那么零下3记作3.故选A.2、A【解析】分式有意义时,分母a-40【详解】依题意得:a40,解得a4.故选:A【点睛】此题考查分式有意义的条件,难度不大3、D【解析】解不等式得到xm+3,再列出关于m的不等式求解.【详解】1,m1x6,1xm6,xm+3,关于x的一元一次不等式1的解集为x4,m+3=4,解得m=1故选D考点:不等式的解集4、B【解析】将一次函数解析式代入到反比例函数解析式中,整理得出x22
9、x+16t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解【详解】由题意可得:x+2=,所以x22x+16t=0,两函数图象有两个交点,且两交点横坐标的积为负数, 解不等式组,得t故选:B点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.5、C【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由20175=4032,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可详解:
10、当y=0时,x(x5)=0,解得x1=0,x2=5,则A1(5,0),OA1=5,将C1绕点A1旋转180得C2,交x轴于点A2;将C2绕点A2旋转180得C3,交x轴于点A3;如此进行下去,得到一“波浪线”,A1A2=A2A3=OA1=5,抛物线C404的解析式为y=(x5403)(x5404),即y=(x2015)(x2020),当x=2018时,y=(20182015)(20182020)=1,即m=1故选C点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键6、A【解析】方程变形后,配方得到结果,即可做出判断【详解】方程,变形得:,配方得:,即故选A【点睛
11、】本题考查的知识点是了解一元二次方程配方法,解题关键是熟练掌握完全平方公式7、B【解析】分析:根据平均数的意义,众数的意义,方差的意义进行选择详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数 故选B点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用8、C【解析】由等腰三角形的性质可求ACD70,由平行线的性质可求解【详解】ADCD,140,ACD70,ABCD,2ACD70,故选:C【点睛】本题考查了等腰三角形的性
12、质,平行线的性质,是基础题9、A【解析】由等腰三角形三线合一的性质得出AD=DB=6,BDC=ADC=90,由AE=5,DEBC知AC=2AE=10,EDC=BCD,再根据正弦函数的概念求解可得【详解】ABC中,ACBC,过点C作CDAB,ADDB6,BDCADC90,AE5,DEBC,AC2AE10,EDCBCD,sinEDCsinBCD,故选:A【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点10、A【解析】由解析式可知该函数在x=h时取得最小值1,xh时,y随x的增大而增大;当xh时,y随x的增大而减小;根据1x3时,
13、函数的最小值为5可分如下两种情况:若h3,可得当x=3时,y取得最小值5,分别列出关于h的方程求解即可【详解】解:xh时,y随x的增大而增大,当xh时,y随x的增大而减小,若h3,当时,y随x的增大而减小,当x=3时,y取得最小值5,可得:,解得:h=5或h=1(舍),h=5,若1h3时,当x=h时,y取得最小值为1,不是5,此种情况不符合题意,舍去综上所述,h的值为1或5,故选:A【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】根据题意得出AODOCE,进而得出,即可得出k=ECEO
14、=1【详解】解:连接CO,过点A作ADx轴于点D,过点C作CEx轴于点E,连接AO并延长交另一分支于点B,以AB为底作等腰ABC,且ACB=120,COAB,CAB=10,则AOD+COE=90,DAO+AOD=90,DAO=COE,又ADO=CEO=90,AODOCE, =tan60= ,= =1,点A是双曲线y=- 在第二象限分支上的一个动点,SAOD=|xy|= ,SEOC= ,即OECE=,k=OECE=1,故答案为1【点睛】本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出AODOCE是解题关键12、【解析】解:把x=1分别代入、,得y=1、y=
15、,A(1,1),B(1,)P为y轴上的任意一点,点P到直线BC的距离为1PAB的面积故答案为:13、1【解析】依据调和数的意义,有,解得x1.14、3【解析】根据算术平方根定义,先化简,再求的算术平方根.【详解】因为=9所以的算术平方根是3故答案为3【点睛】此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错要熟悉特殊数字0,1,-1的特殊性质15、-1【解析】利用题中的新定义计算即可求出值【详解】解:根据题中的新定义得:原式=*(1)=3*(1)=1故答案为1【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键16、a(ab)1【解析
16、】【分析】先提公因式a,然后再利用完全平方公式进行分解即可【详解】原式=a(a11ab+b1)=a(ab)1,故答案为a(ab)1【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键三、解答题(共8题,共72分)17、,.【解析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题【详解】解: ()=,当a=+1时,原式=【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法18、,1【解析】先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可【详解】原式=由题意,x不能取1,1,2,x取
17、2当x=2时,原式=1【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解答此题的关键19、 (1)证明见解析;(2) 【解析】分析:(1)如下图,连接OC,由已知易得OCDE,结合BDDE可得OCBD,从而可得1=2,结合由OB=OC所得的1=3,即可得到2=3,从而可得BC平分DBA;(2)由OCBD可得EBDEOC和DBMOCM,由根据相似三角形的性质可得得,由,设EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.详解:(1)证明:连结OC,DE与O相切于点C,OCDE.BDDE,OCBD. . 1=2,OB=OC,1=3,2=3,即BC平分DBA.
18、 . (2)OCBD,EBDEOC,DBMOCM,. ,设EA=2k,AO=3k,OC=OA=OB=3k.点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OCDE结合BDDE得到OCBD是解答第1小题的关键;(2)解答第2小题的关键是由OCBD得到EBDEOC和DBMOCM这样利用相似三角形的性质结合已知条件即可求得所求值了.20、小船到B码头的距离是10海里,A、B两个码头间的距离是(10+10)海里【解析】试题分析:过P作PMAB于M,求出PBM=45,PAM=30,求出PM,即可求出BM、AM、BP试题解析:如图:过P作PMAB于M,则PMB=PMA=90,PBM=9045=45,
19、PAM=9060=30,AP=20,PM=AP=10,AM=PM=,BPM=PBM=45,PM=BM=10,AB=AM+MB=,BP=,即小船到B码头的距离是海里,A、B两个码头间的距离是()海里考点:解直角三角形的应用-方向角问题21、(1);(2)【解析】(1)根据可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.【详解】解:(1)(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或
20、树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率22、(1)C;(2)100【解析】(1)根据中位数的定义即可作出判断;(2)先算出样本中C等级的百分比,再用总数乘以400即可.【详解】解:(1)由直方图中可知数据总数为40个,第20,21个数据的平均数为本组数据的中位数,第20,21个数据的等级都是C等级,故本次调查中,男生的跳绳成绩的中位数在C等级;故答案为C.(2)400 =100(人)答:估计该校九年级男生跳绳成绩是等级的人数有100人.【点睛】本题考查了中位数的求法和用样本数估计总体数据,理解相关知识是解题的关键.23、(
21、1)10; (2)72; (3)5,见解析; (4)330.【解析】解:(1)根据题意得:D级的学生人数占全班人数的百分比是:1-20%-46%-24%=10%;(2)A级所在的扇形的圆心角度数是:20%360=72;(3)A等人数为10人,所占比例为20%,抽查的学生数=1020%=50(人),D级的学生人数是5010%=5(人),补图如下:(4)根据题意得:体育测试中A级和B级的学生人数之和是:500(20%+46%)=330(名),答:体育测试中A级和B级的学生人数之和是330名【点睛】本题考查统计的知识,要求考生会识别条形统计图和扇形统计图.24、 【解析】先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果【详解】原式= =1+ =1+= 当x=2cos30+tan45=2+1=+1时=【点睛】本题主要考查了分式的加减及锐角三角函数值解决本题的关键是掌握分式的运算法则和运算顺序