云南省曲靖市沾益区大坡乡重点中学2023届中考联考数学试题含解析.doc

上传人:茅**** 文档编号:87837320 上传时间:2023-04-18 格式:DOC 页数:20 大小:889KB
返回 下载 相关 举报
云南省曲靖市沾益区大坡乡重点中学2023届中考联考数学试题含解析.doc_第1页
第1页 / 共20页
云南省曲靖市沾益区大坡乡重点中学2023届中考联考数学试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《云南省曲靖市沾益区大坡乡重点中学2023届中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《云南省曲靖市沾益区大坡乡重点中学2023届中考联考数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,将ABC绕点C旋转60得到ABC,已知AC=6,BC=4,则线段AB扫过的图形面积为()ABC6D以上答案都不对2计算(ab2)3(ab)2的结果是()Aab4 Bab4 Cab3 Dab33下列各数中是有理数的是()AB0CD4已知a+b4,cd3,则(b+c)(da)的值为( )A7B7C

2、1D15下列计算正确的是()Ax2+x3=x5Bx2x3=x5C(x2)3=x8Dx6x2=x36如图,在RtABC中,C=90, BE平分ABC,ED垂直平分AB于D,若AC=9,则AE的值是 ( )ABC6D47如图,在平面直角坐标系中,ABC位于第二象限,点B的坐标是(5,2),先把ABC向右平移4个单位长度得到A1B1C1,再作与A1B1C1关于于x轴对称的A2B2C2,则点B的对应点B2的坐标是()A(3,2)B(2,3)C(1,2)D(1,2)8如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在lx3的范围内有解,则t的取值

3、范围是( ) A-5t4B3t4C-5t-59解分式方程3=时,去分母可得()A13(x2)=4B13(x2)=4C13(2x)=4D13(2x)=410某种微生物半径约为0.00000637米,该数字用科学记数法可表示为()A0.637105 B6.37106 C63.7107 D6.37107二、填空题(本大题共6个小题,每小题3分,共18分)11已知圆锥的底面半径为,母线长为,则它的侧面展开图的面积等于_12若一个多边形的内角和是900,则这个多边形是 边形13如图,四边形ABCD内接于O,BD是O的直径,AC与BD相交于点E,AC=BC,DE=3,AD=5,则O的半径为_14如图,在A

4、BC中,ABAC,A36, BD平分ABC交AC于点D,DE平分BDC交BC于点E,则 15已知一次函数yax+b,且2a+b1,则该一次函数图象必经过点_16如图,扇形OAB的圆心角为30,半径为1,将它沿箭头方向无滑动滚动到OAB的位置时,则点O到点O所经过的路径长为_三、解答题(共8题,共72分)17(8分)先化简:,再从、2、3中选择一个合适的数作为a的值代入求值18(8分)问题探究(1)如图,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使APD为等腰三角形,那么请画出满足条件的一个等腰三角形APD,并求出此时BP的长;(2)如图,在ABC中,ABC=60,BC=12,

5、AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使EQF=90,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使AMB大约为60,就可以让监控装置的效果达到最佳,已知A=E=D=90,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使AMB=60?若存在,请求出符合条件的DM的长,若不存在,请说明理由19(8分)(1)计算:;(2)化简:20(8分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加1

6、0%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元今年的总收入和总支出计划各是多少万元?21(8分)如图,直线与轴交于点,与轴交于点,且与双曲线的一个交点为,将直线在轴下方的部分沿轴翻折,得到一个“”形折线的新函数若点是线段上一动点(不包括端点),过点作轴的平行线,与新函数交于另一点,与双曲线交于点(1)若点的横坐标为,求的面积;(用含的式子表示)(2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由22(10分)如图,在平面直角坐标系xOy中,函数的图象与直线y2x+1交于点A(1,m).(1)求k、m的值;(2)已知点P(n,0)

7、(n1),过点P作平行于y轴的直线,交直线y2x+1于点B,交函数的图象于点C.横、纵坐标都是整数的点叫做整点.当n3时,求线段AB上的整点个数;若的图象在点A、C之间的部分与线段AB、BC所围成的区域内(包括边界)恰有5个整点,直接写出n的取值范围.23(12分)如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”已知点C的坐标为(0,),点M是抛物线C2:(0)的顶点(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得PBC的面积最

8、大?若存在,求出PBC面积的最大值;若不存在,请说明理由;(3)当BDM为直角三角形时,求的值24如图,边长为1的正方形ABCD的对角线AC、BD相交于点O有直角MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转MPN,旋转角为(090),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G(1)求四边形OEBF的面积;(2)求证:OGBD=EF2;(3)在旋转过程中,当BEF与COF的面积之和最大时,求AE的长参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,

9、小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积【详解】阴影面积=故选D【点睛】本题的关键是理解出,线段AB扫过的图形面积为一个环形2、B【解析】根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,(-ab2)3(-ab)2=-a3b6a2b2=-ab4,故选B.3、B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案【详解】A、是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、是无理数,故本选项错误,故选B【点睛】本题考查了实数的分类,熟知有理数是有

10、限小数或无限循环小数是解题的关键4、C【解析】试题分析:原式去括号可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1故选A考点:代数式的求值;整体思想5、B【解析】分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案详解:A、不是同类项,无法计算,故此选项错误;B、 正确;C、 故此选项错误;D、 故此选项错误;故选:B点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键6、C【解析】由角平分线的定义得到CBE=ABE,再根据线段的垂直平分线的性质得到EA=EB,则A=ABE,可得CBE=30,根据含30度

11、的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC【详解】解:BE平分ABC,CBE=ABE,ED垂直平分AB于D,EA=EB,A=ABE,CBE=30,BE=2EC,即AE=2EC,而AE+EC=AC=9,AE=1故选C7、D【解析】首先利用平移的性质得到A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到A2B2C2中B2的坐标,即可得出答案【详解】解:把ABC向右平移4个单位长度得到A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),则与A1B1C1关于于x轴对称的A2B2C2中B2的坐标为(-1,-2),故选D【点

12、睛】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键8、B【解析】先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1x3的范围内有公共点可确定t的范围【详解】 抛物线y=-x2+mx的对称轴为直线x=2, , 解之:m=4, y=-x2+4x, 当x=2时,y=-4+8=4, 顶点坐标为(2,4), 关于x的-元二次方程-x2+mx-t=0 (t为实数)在lx3的范围内有解, 当x=1时,y=-1+4=3, 当x=2时,y=-4+8=4,

13、 3t4, 故选:B【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质9、B【解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断【详解】方程两边同时乘以(x-2),得13(x2)=4,故选B【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.10、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】0.00000637的小数点向右移动6位得到6.37所以0

14、.00000637用科学记数法表示为6.37106,故选B【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】解:它的侧面展开图的面积=146=14(cm1)故答案为14cm1点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长12、七【解析】根据多边形的内角和公式,列式求解即可.【详解】设这个多边形是边形,根据题意得,解得.故答案为.【点睛】本题主要考查了多边形的内角和公式,熟记公

15、式是解题的关键.13、【解析】如图,作辅助线CF;证明CFAB(垂径定理的推论);证明ADAB,得到ADOC,ADECOE;得到AD:CO=DE:OE,求出CO的长,即可解决问题【详解】如图,连接CO并延长,交AB于点F;AC=BC,CFAB(垂径定理的推论);BD是O的直径,ADAB;设O的半径为r;ADOC,ADECOE,AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,5:r=3:(r-3),解得:r=,故答案为【点睛】该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断14、【

16、解析】试题分析:因为ABC中,ABAC,A36所以ABC=ACB=72因为BD平分ABC交AC于点D所以ABD=CBD=36=A因为DE平分BDC交BC于点E所以CDE=BDE=36=A所以AD=BD=BC根据黄金三角形的性质知,,,所以考点:黄金三角形点评:黄金三角形是一个等腰三角形,它的顶角为36,每个底角为72.它的腰与它的底成黄金比当底角被平分时,角平分线分对边也成黄金比,15、(2,1)【解析】一次函数y=ax+b, 当x=2,y=2a+b,又2a+b=1,当x=2,y=1,即该图象一定经过点(2,1).故答案为(2,1)16、【解析】点O到点O所经过的路径长分三段,先以A为圆心,1

17、为半径,圆心角为90度的弧长,再平移了AB弧的长,最后以B为圆心,1为半径,圆心角为90度的弧长根据弧长公式计算即可【详解】解:扇形OAB的圆心角为30,半径为1,AB弧长=点O到点O所经过的路径长=故答案为:【点睛】本题考查了弧长公式:也考查了旋转的性质和圆的性质三、解答题(共8题,共72分)17、-1.【解析】根据分式的加法和除法可以化简题目中的式子,然后在、2、3中选择一个使得原分式有意义的值代入化简后的式子即可解答本题【详解】,当时,原式故答案为:-1.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法18、(1)1;2-;(1)4+;(4)(200-25-40)米

18、【解析】(1)由于PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题(1)以EF为直径作O,易证O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长(4)要满足AMB=40,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长【详解】(1)作AD的垂直平分线交BC于点P,如图,则PA=PDPAD是等腰三角形四边形ABCD是矩形,AB=DC,B=C=90PA=PD,AB=DC,RtAB

19、PRtDCP(HL)BP=CPBC=2,BP=CP=1以点D为圆心,AD为半径画弧,交BC于点P,如图,则DA=DPPAD是等腰三角形四边形ABCD是矩形,AD=BC,AB=DC,C=90AB=4,BC=2,DC=4,DP=2CP=BP=2-点A为圆心,AD为半径画弧,交BC于点P,如图,则AD=APPAD是等腰三角形同理可得:BP=综上所述:在等腰三角形ADP中,若PA=PD,则BP=1;若DP=DA,则BP=2-;若AP=AD,则BP=(1)E、F分别为边AB、AC的中点,EFBC,EF=BCBC=11,EF=4以EF为直径作O,过点O作OQBC,垂足为Q,连接EQ、FQ,如图ADBC,A

20、D=4,EF与BC之间的距离为4OQ=4OQ=OE=4O与BC相切,切点为QEF为O的直径, EQF=90过点E作EGBC,垂足为G,如图EGBC,OQBC,EGOQEOGQ,EGOQ,EGQ=90,OE=OQ,四边形OEGQ是正方形GQ=EO=4,EG=OQ=4B=40,EGB=90,EG=4,BG=BQ=GQ+BG=4+当EQF=90时,BQ的长为4+(4)在线段CD上存在点M,使AMB=40理由如下:以AB为边,在AB的右侧作等边三角形ABG,作GPAB,垂足为P,作AKBG,垂足为K设GP与AK交于点O,以点O为圆心,OA为半径作O,过点O作OHCD,垂足为H,如图则O是ABG的外接圆

21、,ABG是等边三角形,GPAB,AP=PB=AB AB=170,AP=145ED=185,OH=185-145=6ABG是等边三角形,AKBG,BAK=GAK=40OP=APtan40=145=25OA=1OP=90OHOAO与CD相交,设交点为M,连接MA、MB,如图AMB=AGB=40,OM=OA=90OHCD,OH=6,OM=90,HM=40AE=200,OP=25,DH=200-25若点M在点H的左边,则DM=DH+HM=200-25+40200-25+40420,DMCD点M不在线段CD上,应舍去若点M在点H的右边,则DM=DH-HM=200-25-40200-25-40420,DM

22、CD点M在线段CD上综上所述:在线段CD上存在唯一的点M,使AMB=40,此时DM的长为(200-25-40)米【点睛】本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强而构造等边三角形及其外接圆是解决本题的关键19、(1)4+;(2).【解析】(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;(3)根据分式的减法和除法可以解答本题【详解】(1)=4+1+|12|=4+1+|1|=4+1+1=4+;(

23、2) =【点睛】本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法20、今年的总收入为220万元,总支出为1万元【解析】试题分析:设去年总收入为x万元,总支出为y万元,根据利润=收入-支出即可得出关于x、y的二元一次方程组,解之即可得出结论试题解析:设去年的总收入为x万元,总支出为y万元根据题意,得,解这个方程组,得,(1+10%)x=220,(1-20%)y=1答:今年的总收入为220万元,总支出为1万元21、(1);(2)不能成为平行四边形,理由见解析【解析】(1)将点B坐标代入一次函数上可得出点B的坐标,由点B的坐标,利用待定

24、系数法可求出反比例函数解析式,根据点的坐标为,可以判断出,再由点P的横坐标可得出点P的坐标是,结合PDx轴可得出点D的坐标,再利用三角形的面积公式即可用含的式子表示出MPD的面积;(2)当P为BM的中点时,利用中点坐标公式可得出点P的坐标,结合PDx轴可得出点D的坐标,由折叠的性质可得出直线MN的解析式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点P,C,D的坐标可得出PDPC,由此即可得出四边形BDMC不能成为平行四边形【详解】解:(1)点在直线上,点在的图像上,设,则记的面积为,(2)当点为中点时,其坐标为,直线在轴下方的部分沿轴翻折得表示的函数表达式是:,与不能互相平分,四边形不

25、能成为平行四边形【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P,M,D的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形22、(1)m3,k3;(2)线段AB上有(1,3)、(2,5)、(3,7)共3个整点,当2n3时,有五个整点.【解析】(1)将A点代入直线解析式可求m,再代入,可求k.(2)根据题意先求B,C两点,可得线段AB上的整点的横坐标的范围1x3,且x为整数,所以x取1,2,3

26、.再代入可求整点,即求出整点个数.根据图象可以直接判断2n3.【详解】(1)点A(1,m)在y2x+1上,m21+13.A(1,3).点A(1,3)在函数的图象上,k3.(2)当n3时,B、C两点的坐标为B(3,7)、C(3,1).整点在线段AB上1x3且x为整数x1,2,3当x1时,y3,当x2时,y5,当x3时,y7,线段AB上有(1,3)、(2,5)、(3,7)共3个整点.由图象可得当2n3时,有五个整点.【点睛】本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.23、(1)A(,0)、B(3,0)(2)存在SPBC最大值为 (3)

27、或时,BDM为直角三角形【解析】(1)在中令y=0,即可得到A、B两点的坐标(2)先用待定系数法得到抛物线C1的解析式,由SPBC = SPOC+ SBOPSBOC得到PBC面积的表达式,根据二次函数最值原理求出最大值(3)先表示出DM2,BD2,MB2,再分两种情况:BMD=90时;BDM=90时,讨论即可求得m的值【详解】解:(1)令y=0,则,m0,解得:,A(,0)、B(3,0)(2)存在理由如下:设抛物线C1的表达式为(),把C(0,)代入可得,1的表达式为:,即设P(p,), SPBC = SPOC+ SBOPSBOC=0,当时,SPBC最大值为(3)由C2可知: B(3,0),D

28、(0,),M(1,),BD2=,BM2=,DM2=MBD90, 讨论BMD=90和BDM=90两种情况:当BMD=90时,BM2+ DM2= BD2,即=,解得:,(舍去)当BDM=90时,BD2+ DM2= BM2,即=,解得:,(舍去) 综上所述,或时,BDM为直角三角形24、(1);(2)详见解析;(3)AE=【解析】(1)由四边形ABCD是正方形,直角MPN,易证得BOECOF(ASA),则可证得S四边形OEBF=SBOC=S正方形ABCD;(2)易证得OEGOBE,然后由相似三角形的对应边成比例,证得OGOB=OE2,再利用OB与BD的关系,OE与EF的关系,即可证得结论;(3)首先

29、设AE=x,则BE=CF=1x,BF=x,继而表示出BEF与COF的面积之和,然后利用二次函数的最值问题,求得AE的长【详解】(1)四边形ABCD是正方形,OB=OC,OBE=OCF=45,BOC=90,BOF+COF=90,EOF=90,BOF+COE=90,BOE=COF,在BOE和COF中, BOECOF(ASA),S四边形OEBF=SBOE+SBOE=SBOE+SCOF=SBOC=S正方形ABCD (2)证明:EOG=BOE,OEG=OBE=45,OEGOBE,OE:OB=OG:OE,OGOB=OE2, OGBD=EF2;(3)如图,过点O作OHBC,BC=1, 设AE=x,则BE=CF=1x,BF=x,SBEF+SCOF=BEBF+CFOH 当时,SBEF+SCOF最大;即在旋转过程中,当BEF与COF的面积之和最大时, 【点睛】本题属于四边形的综合题,主要考查了正方形的性质,旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题注意掌握转化思想的应用是解此题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁