《上海市杨浦高级中学2022-2023学年高三下学期第六次检测数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《上海市杨浦高级中学2022-2023学年高三下学期第六次检测数学试卷含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2射线测厚技术原理公式为,其中分别为射线穿过被测物前后的强度,是自然对数的底数,为被测物厚度,为被测物的密度,是被测物对射线的吸收系数.工业上通常用镅241()低能射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为( )(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,结果精确到0.001)A0.110B0.112CD3如图,网格纸是由边长为1的
3、小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为( )ABCD4在边长为2的菱形中,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为( )ABCD5已知三棱柱( )ABCD6已知、分别为双曲线:(,)的左、右焦点,过的直线交于、两点,为坐标原点,若,则的离心率为( )A2BCD7洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( )ABCD8已知函数,为图象的对
4、称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是( )ABCD9设集合,则( )ABCD10若,则的虚部是( )ABCD11如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分别在线段AC,BD1(不包含端点)上运动,则( )A在点F的运动过程中,存在EF/BC1B在点M的运动过程中,不存在B1MAEC四面体EMAC的体积为定值D四面体FA1C1B的体积不为定值12已知偶函数在区间内单调递减,则,满足( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知抛物线,点为抛物线上一动点,过点作圆的切线,切点分别为,则线段长度的取值范围为_.14记S
5、k1k+2k+3k+nk,当k1,2,3,时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,S5An6n5n4+Bn2,可以推测,AB_15已知双曲线的左焦点为,、为双曲线上关于原点对称的两点,的中点为,的中点为,的中点为,若,且直线的斜率为,则_,双曲线的离心率为_16已知数列的前项满足,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,直线为曲线的切线(为自然对数的底数)(1)求实数的值;(2)用表示中的最小值,设函数,若函数为增函数,求实数的取值范围18(12分)已知函数.(1)当时,求不等式的解集;(2)若的图象与轴围成的三角形面
6、积大于6,求的取值范围.19(12分)甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.(1)求的分布列及数学期望;(2)在概率(=0,1,2,3)中, 若的值最大, 求实数的取值范围.20(12分)在多面体中,四边形是正方形,平面,为的中点.(1)求证:;(2)求平面与平面所成角的正弦值.21(12分)如图,四棱锥中,底面为直角梯形,为等边三角形,平面底面,为的中点. (1)求证:平面平面;(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.22(10分)在平面直角坐标系中,已知椭圆:()的左、右焦点分别为、,且点、与椭圆的上顶点构成边长为2的等边三角形
7、(1)求椭圆的方程;(2)已知直线与椭圆相切于点,且分别与直线和直线相交于点、试判断是否为定值,并说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先解不等式化简两个条件,利用集合法判断充分必要条件即可【详解】解不等式可得,解绝对值不等式可得,由于为的子集,据此可知“”是“”的必要不充分条件故选:B【点睛】本题考查了必要不充分条件的判定,考查了学生数学运算,逻辑推理能力,属于基础题.2、C【解析】根据题意知,,代入公式,求出即可.【详解】由题意可得,因为,所以,即.所以这种射线的吸收系数为.故选:C【点睛】本题主
8、要考查知识的迁移能力,把数学知识与物理知识相融合;重点考查指数型函数,利用指数的相关性质来研究指数型函数的性质,以及解指数型方程;属于中档题.3、C【解析】根据三视图还原为几何体,结合组合体的结构特征求解表面积.【详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积,故选C.【点睛】本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.4、D【解析】取AC中点N,由题意得即为二面角的平面角,过点B作于O,易得点O为的中心,则三棱锥的
9、外接球球心在直线BO上,设球心为,半径为,列出方程即可得解.【详解】如图,由题意易知与均为正三角形,取AC中点N,连接BN,DN,则,即为二面角的平面角,过点B作于O,则平面ACD,由,可得,即点O为的中心,三棱锥的外接球球心在直线BO上,设球心为,半径为,,解得,三棱锥的外接球的表面积为.故选:D.【点睛】本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题.5、C【解析】因为直三棱柱中,AB3,AC4,AA112,ABAC,所以BC5,且BC为过底面ABC的截面圆的直径取BC中点D,则OD底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R1
10、3,即R6、D【解析】作出图象,取AB中点E,连接EF2,设F1Ax,根据双曲线定义可得x2a,再由勾股定理可得到c27a2,进而得到e的值【详解】解:取AB中点E,连接EF2,则由已知可得BF1EF2,F1AAEEB,设F1Ax,则由双曲线定义可得AF22a+x,BF1BF23x2ax2a,所以x2a,则EF22a,由勾股定理可得(4a)2+(2a)2(2c)2,所以c27a2,则e故选:D【点睛】本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题对于圆锥曲线中求离心率的问题,关键是列出含有 中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.7、
11、A【解析】基本事件总数,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率【详解】解:从四个阴数和五个阳数中分别随机选取1个数,基本事件总数,其和等于11包含的基本事件有:,共4个,其和等于的概率故选:【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题8、A【解析】结合已知可知,可求,进而可求,代入,结合,可求,即可判断【详解】图象上相邻两个极值点,满足,即,且,当时,为函数的一个极小值点,而故选:【点睛】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用9、D【解析】根据题意,求出集合A,进而求出集合和,分析选项即
12、可得到答案.【详解】根据题意,则故选:D【点睛】此题考查集合的交并集运算,属于简单题目,10、D【解析】通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【详解】由题可知,所以的虚部是1.故选:D.【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.11、C【解析】采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.【详解】A错误由平面,/而与平面相交,故可知与平面相交,所以不存在EF/BC1B错误,如图,作由又平面,所以平面又平面,所以由/,所以,平面所以平面,又平面所以,所以存在C正确四面体EMAC的体积为其中为点到平面的距离,由/,平
13、面,平面所以/平面,则点到平面的距离即点到平面的距离,所以为定值,故四面体EMAC的体积为定值错误由/,平面,平面所以/平面,则点到平面的距离即为点到平面的距离,所以为定值所以四面体FA1C1B的体积为定值故选:C【点睛】本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.12、D【解析】首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【详解】因为偶函数在减,所以在上增,.故选:D【点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.二、填空题:本题共4小题,每小题
14、5分,共20分。13、【解析】连接,易得,可得四边形的面积为,从而可得,进而求出的取值范围,可求得的范围.【详解】如图,连接,易得,所以四边形的面积为,且四边形的面积为三角形面积的两倍,所以,所以,当最小时,最小,设点,则,所以当时,则,当点的横坐标时,此时,因为随着的增大而增大,所以的取值范围为.故答案为:.【点睛】本题考查直线与圆的位置关系的应用,考查抛物线上的动点到定点的距离的求法,考查学生的计算求解能力,属于中档题.14、【解析】观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案.【详解】根据所给的已知等式得到:各等式右边各项的系数和为1,最高次项的系数
15、为该项次数的倒数,A,A1,解得B,所以AB故答案为:【点睛】本题考查了归纳推理,意在考查学生的推理能力.15、 【解析】设,根据中点坐标公式可得坐标,利用可得到点坐标所满足的方程,结合直线斜率可求得,进而求得;将点坐标代入双曲线方程,结合焦点坐标可求得,进而得到离心率.【详解】左焦点为,双曲线的半焦距设,即,即,又直线斜率为,即,在双曲线上,即,结合可解得:,离心率.故答案为:;.【点睛】本题考查直线与双曲线的综合应用问题,涉及到直线截双曲线所得线段长度的求解、双曲线离心率的求解问题;关键是能够通过设点的方式,结合直线斜率、垂直关系、点在双曲线上来构造方程组求得所需变量的值.16、【解析】由
16、已知写出用代替的等式,两式相减后可得结论,同时要注意的求解方法【详解】,时,得,又,()故答案为:【点睛】本题考查求数列通项公式,由已知条件类比已知求的解题方法求解三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)先求导,然后利用导数等于求出切点的横坐标,代入两个曲线的方程,解方程组,可求得;(2)设与交点的横坐标为,利用导数求得,从而,然后利用求得的取值范围为.试题解析:(1)对求导得 设直线与曲线切于点,则,解得,所以的值为1 (2)记函数,下面考察函数的符号,对函数求导得 当时,恒成立 当时,从而 在上恒成立,故在上单调递减,又曲
17、线在上连续不间断,所以由函数的零点存在性定理及其单调性知唯一的,使;,从而, 由函数为增函数,且曲线在上连续不断知在,上恒成立当时,在上恒成立,即在上恒成立,记,则,当变化时,变化情况列表如下:30极小值,故“在上恒成立”只需,即当时,当时,在上恒成立,综合知,当时,函数为增函数故实数的取值范围是 考点:函数导数与不等式.【方法点晴】函数导数问题中,和切线有关的题目非常多,我们只要把握住关键点:一个是切点,一个是斜率,切点即在原来函数图象上,也在切线上;斜率就是导数的值.根据这两点,列方程组,就能解决.本题第二问我们采用分层推进的策略,先求得的表达式,然后再求得的表达式,我们就可以利用导数这个
18、工具来求的取值范围了.18、()()(2,+)【解析】试题分析:()由题意零点分段即可确定不等式的解集为;()由题意可得面积函数为为,求解不等式可得实数a的取值范围为 试题解析:(I)当时,化为, 当时,不等式化为,无解; 当时,不等式化为,解得; 当时,不等式化为,解得 所以的解集为 (II)由题设可得, 所以函数的图像与x轴围成的三角形的三个顶点分别为,的面积为 由题设得,故 所以a的取值范围为 19、(1),的分布列为0123P(1a)2(1a2)(2aa2)(2)【解析】(1)P()是“个人命中,3个人未命中”的概率其中的可能取值为0、1、2、3.P(0)(1a)2(1a)2;P(1)
19、(1a)2a(1a)(1a2);P(2)a(1a)a2(2aa2);P(3)a2.所以的分布列为0123P(1a)2(1a2)(2aa2)的数学期望为E()0(1a)21(1a2)2(2aa2)3.(2)P(1)P(0)(1a2)(1a)2a(1a);P(1)P(2)(1a2)(2aa2);P(1)P(3)(1a2)a2.由和0a1,得0a,即a的取值范围是.20、(1)证明见解析(2)【解析】(1)首先证明,平面.即可得到平面,.(2)以为坐标原点,所在的直线分别为轴、轴、轴建立空间直角坐标系,分别求出平面和平面的法向量,带入公式求解即可.【详解】(1)平面,平面,.又四边形是正方形,.,平
20、面.平面,.又,为的中点,.,平面.平面,.(2)平面,平面.以为坐标原点,所在的直线分别为轴、轴、轴建立空间直角坐标系.如图所示:则,.,.设为平面的法向量,则,得,令,则.由题意知为平面的一个法向量,平面与平面所成角的正弦值为.【点睛】本题第一问考查线线垂直,先证线面垂直时解题关键,第二问考查二面角,建立空间直角坐标系是解题关键,属于中档题.21、(1)见解析(2)【解析】(1)根据等边三角形的性质证得,根据面面垂直的性质定理,证得底面,由此证得,结合证得平面,由此证得:平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成的锐二面角的余弦值.【详解】(1)证明:
21、为等边三角形,为的中点,平面底面,平面底面,底面平面,又由题意可知为正方形,又,平面平面,平面平面(2)如图建立空间直角坐标系,则,由已知,得,设平面的法向量为,则令,则,由(1)知平面的法向量可取为平面与平面所成的锐二面角的余弦值为.【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.22、(1)(2)为定值【解析】(1)根据题意,得出,从而得出椭圆的标准方程(2)根据题意设直线方程:,因为直线与椭圆相切,这有一个交点,联立直线与椭圆方程得,则,解得把和代入,得和 ,的表达式,比即可得出为定值【详解】解:(1)依题意,所以椭圆的标准方程为(2)为定值.因为直线分别与直线和直线相交,所以,直线一定存在斜率设直线:,由得,由,得 把代入,得,把代入,得,又因为,所以,由式,得, 把式代入式,得,即为定值【点睛】本题考查椭圆的定义、方程、和性质,主要考查椭圆方程的运用,考查椭圆的定值问题,考查计算能力和转化思想,是中档题.