云南省红河州二中2023年高考数学全真模拟密押卷含解析.doc

上传人:茅**** 文档编号:87836821 上传时间:2023-04-18 格式:DOC 页数:19 大小:1.83MB
返回 下载 相关 举报
云南省红河州二中2023年高考数学全真模拟密押卷含解析.doc_第1页
第1页 / 共19页
云南省红河州二中2023年高考数学全真模拟密押卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《云南省红河州二中2023年高考数学全真模拟密押卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省红河州二中2023年高考数学全真模拟密押卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则集合的非空子集个数是( )A2B3C7D82不等式组表示的平面区域为,则( )A,B,C,D,3已知的内角的对

2、边分别是且,若为最大边,则的取值范围是( )ABCD4复数满足,则复数等于()ABC2D-25函数与的图象上存在关于直线对称的点,则的取值范围是( )ABCD6若双曲线的一条渐近线与圆至多有一个交点,则双曲线的离心率的取值范围是( )ABCD7设,则,则( )ABCD8已知集合A=y|y=|x|1,xR,B=x|x2,则下列结论正确的是( )A3A B3B CAB=B DAB=B9已知集合,集合,则等于( )ABCD10已知m为实数,直线:,:,则“”是“”的( )A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件11已知是虚数单位,则复数( )ABC2D12执行如图所示的程序框

3、图,如果输入,则输出属于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数,若,则实数的取值范围为_14已知角的终边过点,则_.15己知函数,若关于的不等式对任意的恒成立,则实数的取值范围是_.16数列的前项和为,数列的前项和为,满足,且.若任意,成立,则实数的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在市与市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.(1)现征求两市居民的种植意见,

4、看看哪一种植物更受欢迎,得到的数据如下所示:A市居民B市居民喜欢杨树300200喜欢木棉树250250是否有的把握认为喜欢树木的种类与居民所在的城市具有相关性;(2)若从所有的路口中随机抽取4个路口,恰有个路口种植杨树,求的分布列以及数学期望;(3)在所有的路口种植完成后,选取3个种植同一种树的路口,记总的选取方法数为,求证:.附:0.1000.0500.0100.0012.7063.8416.63510.82818(12分)如图,在四棱锥中,平面平面ABCD,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.求证:(1)直线平面EFG;(2)直线

5、平面SDB.19(12分)某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:123456758810141517(1)经过进一步统计分析,发现与具有线性相关关系请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为现有张、王两位先生

6、参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望参考公式:,20(12分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线和直线的极坐标方程;(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.21(12分)已知函数,且.(1)求的解析式;(2)已知,若对任意的,总存在,使得成立,求的取值范围.22(10分)已知圆O经过椭圆C:的两个焦点以及两个顶点,且点在椭圆C上求椭圆C的方程;若直线l与圆O相切,与椭圆C交于M、N两点,且,求直线l的倾

7、斜角参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先确定集合中元素,可得非空子集个数【详解】由题意,共3个元素,其子集个数为,非空子集有7个故选:C【点睛】本题考查集合的概念,考查子集的概念,含有个元素的集合其子集个数为,非空子集有个2、D【解析】根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中 ,设,则,的几何意义为直线在轴上的截距的2倍,由图可得:当过点时,直线在轴上的截距最大,即,当过点

8、原点时,直线在轴上的截距最小,即,故AB错误;设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.3、C【解析】由,化简得到的值,根据余弦定理和基本不等式,即可求解.【详解】由,可得,可得,通分得,整理得,所以,因为为三角形的最大角,所以,又由余弦定理 ,当且仅当时,等号成立,所以,即,又由,所以的取值范围是.故选:C.【点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.4

9、、B【解析】通过复数的模以及复数的代数形式混合运算,化简求解即可.【详解】复数满足,故选B.【点睛】本题主要考查复数的基本运算,复数模长的概念,属于基础题5、C【解析】由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件故选:C.【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题6、C【解析】求得双曲线的渐近线方程,可

10、得圆心到渐近线的距离,由点到直线的距离公式可得的范围,再由离心率公式计算即可得到所求范围【详解】双曲线的一条渐近线为,即,由题意知,直线与圆相切或相离,则,解得,因此,双曲线的离心率.故选:C.【点睛】本题考查双曲线的离心率的范围,注意运用圆心到渐近线的距离不小于半径,考查化简整理的运算能力,属于中档题7、A【解析】根据换底公式可得,再化简,比较的大小,即得答案.【详解】,.,显然.,即,即.综上,.故选:.【点睛】本题考查换底公式和对数的运算,属于中档题.8、C【解析】试题分析:集合 考点:集合间的关系9、B【解析】求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】

11、该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.10、A【解析】根据直线平行的等价条件,求出m的值,结合充分条件和必要条件的定义进行判断即可【详解】当m=1时,两直线方程分别为直线l1:x+y1=0,l2:x+y2=0满足l1l2,即充分性成立,当m=0时,两直线方程分别为y1=0,和2x2=0,不满足条件当m0时,则l1l2,由得m23m+2=0得m=1或m=2,由得m2,则m=1,即“m=1”是“l1l2”的充要条件,故答案为:A【点睛】(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能

12、力.(2) 本题也可以利用下面的结论解答,直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合.11、A【解析】根据复数的基本运算求解即可.【详解】.故选:A【点睛】本题主要考查了复数的基本运算,属于基础题.12、B【解析】由题意,框图的作用是求分段函数的值域,求解即得解.【详解】由题意可知,框图的作用是求分段函数的值域,当;当综上:.故选:B【点睛】本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】画图分析可得函数是偶函数,且在上单调递减,利用偶函数性质和单调性可解.【详

13、解】作出函数的图如下所示,观察可知,函数为偶函数,且在上单调递增,在上单调递减,故,故实数的取值范围为.故答案为: 【点睛】本题考查利用函数奇偶性及单调性解不等式. 函数奇偶性的常用结论:(1)如果函数是偶函数,那么(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性14、【解析】由题意利用任意角的三角函数的定义,两角和差正弦公式,求得的值【详解】解:角的终边过点,故答案为:【点睛】本题主要考查任意角的三角函数的定义,两角和差正弦公式,属于基础题15、【解析】首先判断出函数为定义在上的奇函数,且在定义域上单调递增,由此不等式对任意的恒成立,可转化为在上恒成立

14、,进而建立不等式组,解出即可得到答案【详解】解:函数的定义域为,且,函数为奇函数,当时,函数,显然此时函数为增函数,函数为定义在上的增函数,不等式即为,在上恒成立,解得故答案为【点睛】本题考查函数单调性及奇偶性的综合运用,考查不等式的恒成立问题,属于常规题目16、【解析】当时,可得到,再用累乘法求出,再求出,根据定义求出,再借助单调性求解【详解】解:当时,则,当时,(当且仅当时等号成立),故答案为:【点睛】本题主要考查已知求,累乘法,主要考查计算能力,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)没有(2)分布列见解析,(3)证明见解析【解析】(1)根据公

15、式计算卡方值,再对应卡值表判断.(2)根据题意,随机变量的可能取值为0,1,2,3,4,分别求得概率,写出分布列,根据期望公式求值.(3)因为至少8个的偶数个十字路口,所以,即.要证,即证,根据组合数公式,即证;易知有.成立.设个路口中有个路口种植杨树,下面分类讨论当时,由论证.当时,由论证.当时,设,再论证当 时,取得最小值即可.【详解】(1)本次实验中,故没有99.9%的把握认为喜欢树木的种类与居民所在的城市具有相关性.(2)依题意,的可能取值为0,1,2,3,4,故,01234故.(3),.要证,即证;首先证明:对任意,有.证明:因为,所以.设个路口中有个路口种植杨树,当时,因为,所以,

16、于是.当时,同上可得当时,设,当时,显然,当即时,当即时,即;,因此,即.综上,即.【点睛】本题考查独立性检验、离散型随机变量的分布列以及期望、排列组合,还考查运算求解能力以及必然与或然思想,属于难题.18、(1)见解析(2)见解析【解析】(1) 连接AC、BD交于点O,交EF于点H,连接GH,再证明即可.(2)证明与即可.【详解】(1)连接AC、BD交于点O,交EF于点H,连接GH,所以O为AC的中点,H为OC的中点,由E、F为DC、BC的中点,再由题意可得,所以在三角形CAS中,平面EFG,平面EFG,所以直线平面EFG. (2)在中,由余弦定理得,即,解得,由勾股定理逆定理可知,因为侧面

17、底面ABCD,由面面垂直的性质定理可知平面ABCD,所以,因为底面ABCD是菱形,所以,因为,所以平面SDB.【点睛】本题考查线面平行与垂直的证明.需要根据题意利用等比例以及余弦定理勾股定理等证明.属于中档题.19、(1);(2)见解析【解析】试题分析:(I)由题意可得,则,关于的线性回归方程为(II)由题意可知二人所获购物券总金额的可能取值有、元,它们所对应的概率分别为:,据此可得分布列,计算相应的数学期望为元试题解析:(I)依题意:,则关于的线性回归方程为(II)二人所获购物券总金额的可能取值有、元,它们所对应的概率分别为:,所以,总金额的分布列如下表:03006009001200总金额的

18、数学期望为元20、(1),.(2)【解析】(1)先将曲线的参数方程化为直角坐标方程,即可代入公式化为极坐标;根据直线的直角坐标方程,求得倾斜角,即可得极坐标方程.(2)将直线的极坐标方程代入曲线、可得,进而代入可得的值.【详解】(1)曲线的参数方程为(为参数),消去得,把,代入得,从而得的极坐标方程为,直线的直角坐标方程为,其倾斜角为,直线的极坐标方程为.(2)将代入曲线的极坐标方程分别得到,则.【点睛】本题考查了参数方程化为普通方程的方法,直角坐标方程化为极坐标方程的方法,极坐标的几何意义,属于中档题.21、(1);(2)【解析】(1)由,可求出的值,进而可求得的解析式;(2)分别求得和的值

19、域,再结合两个函数的值域间的关系可求出的取值范围.【详解】(1)因为,所以,解得,故.(2)因为,所以,所以,则,图象的对称轴是.因为,所以,则,解得,故的取值范围是.【点睛】本题考查了三角函数的恒等变换,考查了二次函数及三角函数值域的求法,考查了学生的计算求解能力,属于中档题.22、(1);(2)或【解析】(1)先由题意得出 ,可得出与的等量关系,然后将点的坐标代入椭圆的方程,可求出与的值,从而得出椭圆的方程;(2)对直线的斜率是否存在进行分类讨论,当直线的斜率不存在时,可求出,然后进行检验;当直线的斜率存在时,可设直线的方程为,设点,先由直线与圆相切得出与之间的关系,再将直线的方程与椭圆的

20、方程联立,由韦达定理,利用弦长公式并结合条件得出的值,从而求出直线的倾斜角.【详解】(1)由题可知圆只能经过椭圆的上下顶点,所以椭圆焦距等于短轴长,可得,又点在椭圆上,所以,解得,即椭圆的方程为. (2)圆的方程为,当直线不存在斜率时,解得,不符合题意;当直线存在斜率时,设其方程为,因为直线与圆相切,所以,即. 将直线与椭圆的方程联立,得:,判别式,即,设,则,所以,解得, 所以直线的倾斜角为或.【点睛】求椭圆标准方程的方法一般为待定系数法,根据条件确定关于的方程组,解出,从而写出椭圆的标准方程解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题涉及弦中点的问题常常用“点差法”解决,往往会更简单.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁