云南省腾冲市第八中学2023年高考数学全真模拟密押卷含解析.doc

上传人:茅**** 文档编号:87836961 上传时间:2023-04-18 格式:DOC 页数:21 大小:2.23MB
返回 下载 相关 举报
云南省腾冲市第八中学2023年高考数学全真模拟密押卷含解析.doc_第1页
第1页 / 共21页
云南省腾冲市第八中学2023年高考数学全真模拟密押卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《云南省腾冲市第八中学2023年高考数学全真模拟密押卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省腾冲市第八中学2023年高考数学全真模拟密押卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线(,)的左、右顶点分别为,虚轴的两个端点分别为,若四边形的内切圆面积为,则双曲线焦距的最小值为( )A8B16C

2、D2已知 若在定义域上恒成立,则的取值范围是( )ABCD3设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为( )ABCD4复数满足,则( )ABCD5设F为双曲线C:(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点若|PQ|=|OF|,则C的离心率为ABC2D62020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遺到、三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到县的分法有( )A6种B12种C24种D36种7设命题:,则为A,B,C,D,8如图所示程序框图,

3、若判断框内为“”,则输出( )A2B10C34D989正三棱柱中,是的中点,则异面直线与所成的角为( )ABCD10已知为等差数列,若,则( )A1B2C3D611中国古典乐器一般按“八音”分类这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于周礼春官大师,分为“金、石、土、革、丝、木、匏(po)、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器现从“八音”中任取不同的“两音”,则含有打击乐器的概率为( )ABCD12已知,满足,且的最大值是最小值的4倍,则的值是( )A4BCD二、填空题:本题共4小题,每小题5分,共20分。13在中,是的角平分

4、线,设,则实数的取值范围是_.14在数列中,则数列的通项公式_.15已知函数在上仅有2个零点,设,则在区间上的取值范围为_16如图所示,点,B均在抛物线上,等腰直角的斜边为BC,点C在x轴的正半轴上,则点B的坐标是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知分别是椭圆的左、右焦点,直线与交于两点,且(1)求的方程;(2)已知点是上的任意一点,不经过原点的直线与交于两点,直线的斜率都存在,且,求的值18(12分)已知函数.(1)求不等式的解集;(2)设的最小值为,正数,满足,证明:.19(12分)如图,三棱柱的侧棱垂直于底面,且,是棱的中点.(1)证明:;

5、(2)求二面角的余弦值.20(12分)某生物硏究小组准备探究某地区蜻蜓的翼长分布规律,据统计该地区蜻蜓有两种,且这两种的个体数量大致相等,记种蜻蜓和种蜻蜓的翼长(单位:)分别为随机变量,其中服从正态分布,服从正态分布.()从该地区的蜻蜓中随机捕捉一只,求这只蜻蜓的翼长在区间的概率;()记该地区蜻蜓的翼长为随机变量,若用正态分布来近似描述的分布,请你根据()中的结果,求参数和的值(精确到0.1);()在()的条件下,从该地区的蜻蜓中随机捕捉3只,记这3只中翼长在区间的个数为,求的分布列及数学期望(分布列写出计算表达式即可).注:若,则,.21(12分)一张边长为的正方形薄铝板(图甲),点,分别在

6、,上,且(单位:).现将该薄铝板沿裁开,再将沿折叠,沿折叠,使,重合,且重合于点,制作成一个无盖的三棱锥形容器(图乙),记该容器的容积为(单位:),(注:薄铝板的厚度忽略不计)(1)若裁开的三角形薄铝板恰好是该容器的盖,求,的值;(2)试确定的值,使得无盖三棱锥容器的容积最大.22(10分)已知函数.(1)解不等式;(2)若,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最

7、小值.【详解】根据题意,画出几何关系如下图所示:设四边形的内切圆半径为,双曲线半焦距为,则所以,四边形的内切圆面积为,则,解得,则,即故由基本不等式可得,即,当且仅当时等号成立.故焦距的最小值为.故选:D【点睛】本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.2、C【解析】先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等式,即可解得实数的取值范围.【详解】,先解不等式.当时,由,得,解得,此时;当时,由,得.所以,不等式的解集为.下面来求函数的值域.当时,则,此时;当时,此时.综上所述,函数的值域为,由于在定义域上恒成

8、立,则不等式在定义域上恒成立,所以,解得.因此,实数的取值范围是.故选:C.【点睛】本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.3、C【解析】如图所示:切点为,连接,作轴于,计算,根据勾股定理计算得到答案.【详解】如图所示:切点为,连接,作轴于,故,在中,故,故,根据勾股定理:,解得.故选:.【点睛】本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用能力.4、C【解析】利用复数模与除法运算即可得到结果.【详解】解: ,故选:C【点睛】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.5、A【解析】准确画图,

9、由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来6、B【解析】分成甲单独到县和甲与另一人一同到县两种情况进行分类讨论,由此求得甲被派遣到县的分法数.【详解】如果甲单独到县,则方法数有种.如果甲与另一人一同到县,则方法数有种.故总的方法数有种.故选:B【点睛】本

10、小题主要考查简答排列组合的计算,属于基础题.7、D【解析】直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题:,则为:,.故本题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.8、C【解析】由题意,逐步分析循环中各变量的值的变化情况,即可得解.【详解】由题意运行程序可得:,;,;,;不成立,此时输出.故选:C.【点睛】本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.9、C【解析】取中点,连接,根据正棱柱的结构性质,得出/,则即为异面直线与所成角,求出,即可得出结果.【详解】解:如图,取中点,连接,

11、由于正三棱柱,则底面,而底面,所以,由正三棱柱的性质可知,为等边三角形,所以,且,所以平面,而平面,则,则/,即为异面直线与所成角,设,则,则,.故选:C.【点睛】本题考查通过几何法求异面直线的夹角,考查计算能力.10、B【解析】利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出【详解】an为等差数列,,,解得10,d3,+4d10+111故选:B【点睛】本题考查等差数列通项公式求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题11、B【解析】分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.【详解】从“八音”中任取不同的“两音”共有种取法

12、;“两音”中含有打击乐器的取法共有种取法;所求概率.故选:.【点睛】本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.12、D【解析】试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,由,用面积公式表示面积可得到,利用,即得解.【详解】设,由得:,化简得,由于,故.故答案为:【点睛】本题考查了解三角形综合,考查了学生转化划归,综合分析,数学运算能力,属于中

13、档题.14、【解析】由题意可得,又,数列的奇数项为首项为1,公差为2的等差数列,对分奇数和偶数两种情况,分别求出,从而得到数列的通项公式.【详解】解:,得:,又,数列的奇数项为首项为1,公差为2的等差数列,当为奇数时,当为偶数时,则为奇数,数列的通项公式,故答案为:.【点睛】本题考查求数列的通项公式,解题关键是由已知递推关系得出,从而确定数列的奇数项成等差数列,求出通项公式后再由已知求出偶数项,要注意结果是分段函数形式15、【解析】先根据零点个数求解出的值,然后得到的解析式,采用换元法求解在上的值域即可.【详解】因为在上有两个零点,所以,所以,所以且,所以,所以,所以,令,所以,所以,因为,所

14、以,所以,所以,所以 ,所以.故答案为:.【点睛】本题考查三角函数图象与性质的综合,其中涉及到换元法求解三角函数值域的问题,难度较难. 对形如的函数的值域求解,关键是采用换元法令,然后根据,将问题转化为关于的函数的值域,同时要注意新元的范围.16、【解析】设出两点的坐标,结合抛物线方程、两条直线垂直的条件以及两点间的距离公式列方程,解方程求得的坐标.【详解】设,由于在抛物线上,所以.由于三角形是等腰直角三角形,所以.由得,化为,可得,所以,解得,则.所以.故答案为:【点睛】本题考查抛物线的方程和运用,考查方程思想和运算能力,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤

15、。17、(1)(2)【解析】(1)不妨设,计算得到,根据面积得到,计算得到答案.(2)设,联立方程利用韦达定理得到,代入化简计算得到答案.【详解】(1)由题意不妨设,则,又,故的方程为(2)设,则,设直线的方程为,联立整理得在上,上式可化为,【点睛】本题考查了椭圆方程,定值问题,意在考查学生的计算能力和综合应用能力.18、(1)(2)证明见解析【解析】(1)将表示为分段函数的形式,由此求得不等式的解集.(2)利用绝对值三角不等式求得的最小值,利用分析法,结合基本不等式,证得不等式成立.【详解】(1),不等式,即或或,即有或或,所以所求不等式的解集为.(2),因为,所以要证,只需证,即证,因为,

16、所以只要证,即证,即证,因为,所以只需证,因为,所以成立,所以.【点睛】本小题主要考查绝对值不等式的解法,考查分析法证明不等式,考查基本不等式的运用,属于中档题.19、(1)详见解析;(2).【解析】(1)根据平面,四边形是矩形,由为中点,且,利用平面几何知识,可得,又平面,所以,根据线面垂直的判定定理可有平面,从而得证.(2)分别以,为,轴建立空间直角坐标系,得到,分别求得平和平面的法向量,代入二面角向量公式求解.【详解】(1)证明:平面,四边形是矩形,为中点,且,.,与相似,平面,平面,平面,平面,.(2)如图,分别以,为,轴建立空间直角坐标系,则,设平面的法向量为,则,解得:,同理,平面

17、的法向量,设二面角的大小为,则.即二面角的余弦值为.【点睛】本题主要考查线线垂直、线面垂直的转化以及二面角的求法,还考查了转化化归的思想和推理论证、运算求解的能力,属于中档题.20、();(),;()详见解析.【解析】()由题知这只蜻蜓是种还是种的可能性是相等的,所以,代入数值运算即可;()可判断均值应为,再结合(1)和题干备注信息可得,进而求解;()求得,该分布符合二项分布,故,列出分布列,计算出对应概率,结合即可求解;【详解】()记这只蜻蜓的翼长为.因为种蜻蜓和种蜻蜓的个体数量大致相等,所以这只蜻蜓是种还是种的可能性是相等的.所以.()由于两种蜻蜓的个体数量相等,的方差也相等,根据正态曲线

18、的对称性,可知由()可知,得.()设蜻蜓的翼长为,则.由题有,所以.因此的分布列为.【点睛】本题考查正态分布基本量的求解,二项分布求解离散型随机变量分布列和期望,属于中档题21、(1),;(2)当值为时,无盖三棱锥容器的容积最大.【解析】(1)由已知求得,求得三角形的面积,再由已知得到平面,代入三棱锥体积公式求的值;(2)由题意知,在等腰三角形中,则,写出三角形面积,求其平方导数的最值,则答案可求【详解】解:(1)由题意,为等腰直角三角形,又,恰好是该零件的盖,则,由图甲知,则在图乙中,又,平面,平面,;(2)由题意知,在等腰三角形中,则,令,可得:当时,当,时,当时,有最大值由(1)知,平面

19、,该三棱锥容积的最大值为,且当时,取得最大值,无盖三棱锥容器的容积最大答:当值为时,无盖三棱锥容器的容积最大【点睛】本题考查棱锥体积的求法,考查空间想象能力与思维能力,训练了利用导数求最值,属于中档题22、(1);(2)证明见解析.【解析】(1)分、三种情况解不等式,即可得出该不等式的解集;(2)利用分析法可知,要证,即证,只需证明即可,因式分解后,判断差值符号即可,由此证明出所证不等式成立.【详解】(1).当时,由,解得,此时;当时,不成立;当时,由,解得,此时.综上所述,不等式的解集为;(2)要证,即证,因为,所以,.所以,.故所证不等式成立.【点睛】本题考查绝对值不等式的求解,同时也考查了利用分析法和作差法证明不等式,考查分类讨论思想以及推理能力,属于中等题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁