《[精选]协整检验与误差修正模型.pptx》由会员分享,可在线阅读,更多相关《[精选]协整检验与误差修正模型.pptx(73页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、3.2 协整与误差修正模型协整与误差修正模型一、长期均衡与协整分析一、长期均衡与协整分析二、协整检验二、协整检验EGEG检验检验三、协整检验三、协整检验JJJJ检验检验四、误差修正模型四、误差修正模型一、长期均衡与协整分析一、长期均衡与协整分析Equilibrium and Cointegration1、问题的提出、问题的提出经经典典回回归归模模型型classical classical regression regression modelmodel是是建建立立在在平平稳稳数数据据变变量量基基础础上上的的,对对于于非非平平稳稳变变量量,不不能能使使用用经经典典回归模型,否则会出现虚假回归等诸
2、多问题。回归模型,否则会出现虚假回归等诸多问题。由由于于许许多多经经济济变变量量是是非非平平稳稳的的,这这就就给给经经典典的的回回归归分分析析方方法带来了很大限制。法带来了很大限制。但但是是,如如果果变变量量之之间间有有着着长长期期的的稳稳定定关关系系,即即它它们们之之间间是是协协整整的的cointegrationcointegration,则则是是可可以以使使用用经经典典回回归归模模型型方方法建立回归模型的。法建立回归模型的。例例如如,中中国国居居民民人人均均消消费费水水平平与与人人均均GDPGDP变变量量的的例例子子,从从经经济济理理论论上上说说,人人均均GDPGDP决决定定着着居居民民人
3、人均均消消费费水水平平,它它们们之之间间有着长期的稳定关系,即它们之间是协整的。有着长期的稳定关系,即它们之间是协整的。经经济济理理论论指指出出,某某些些经经济济变变量量间间确确实实存存在在着着长长期期均均衡衡关关系系,这这种种均均衡衡关关系系意意味味着着经经济济系系统统不不存存在在破破坏坏均均衡衡的的内内在在机机制制,如如果果变变量量在在某某时时期期受受到到干干扰扰后后偏偏离离其其长长期期均均衡衡点点,则则均均衡衡机机制制将将会会在在下下一一期期进进行行调调整整以以使使其其重重新新回回到到均均衡衡状状态。态。假设X与Y间的长期“均衡关系由式描述 2 2、长期均衡、长期均衡该均衡关系意味着该均
4、衡关系意味着:给定X的一个值,Y相应的均衡值也随之确定为0+1X。在在t-1期末,存在下述三种情形之一:期末,存在下述三种情形之一:Y等于它的均衡值:等于它的均衡值:Yt-1=0 0+1 1Xt;Y小于它的均衡值:小于它的均衡值:Yt-1 0 0+1 1Xt;在在时时期期t,假假设设X有有一一个个变变化化量量 Xt,如如果果变变量量X与与Y在在时时期期t与与t-1末末期期仍仍满满足足它它们们间间的的长长期期均均衡衡关关系,即上述第一种情况,则系,即上述第一种情况,则Y的相应变化量为的相应变化量为:vt=t-t-1 如如果果t-1期期末末,发发生生了了上上述述第第二二种种情情况况,即即Y的的值值
5、小小于于其其均均衡衡值值,则则t期期末末Y的的变变化化往往往往会会比比第第一种情形下一种情形下Y的变化大一些;的变化大一些;反反之之,如如果果t-1期期末末Y的的值值大大于于其其均均衡衡值值,则则t期期末末Y的变化往往会小于第一种情形下的的变化往往会小于第一种情形下的 Yt。可可见见,如如果果Yt=0 0+1 1Xt+t t正正确确地地提提示示了了X与与Y间间的的长长期期稳稳定定的的“均均衡衡关关系系,则则意意味味着着Y对其均衡点的偏离从本质上说是对其均衡点的偏离从本质上说是“临时性临时性的。的。一一个个重重要要的的假假设设就就是是:随随机机扰扰动动项项 t t必必须须是是平平稳稳序序列列。如
6、如果果 t t有有随随机机性性趋趋势势上上升升或或下下降降,则则会会导导致致Y对对其其均均衡衡点点的的任任何何偏偏离离都都会会被被长长期期累积下来而不能被消除。累积下来而不能被消除。式Yt=0+1Xt+t中的随机扰动项也被称为非非均衡误差均衡误差disequilibrium error,它是变量X与Y的一个线性组合:如果如果X与与Y间的长期均衡关系正确,该式表述的非间的长期均衡关系正确,该式表述的非均衡误差应是一平稳时间序列,并且具有零期望值,均衡误差应是一平稳时间序列,并且具有零期望值,即是具有即是具有0均值的均值的I0序列。序列。非稳定的时间序列,它们的线性组合也可能成为非稳定的时间序列,
7、它们的线性组合也可能成为平稳的。平稳的。称变量称变量X与与Y是协整的是协整的cointegrated。3 3、协整、协整如果序列如果序列XX1t1t,X,X2t2t,X,Xktkt 都是都是d d阶单整,存在向量阶单整,存在向量=1 1,2 2,k k,使得,使得Z Zt t=X XT T I Id-bd-b,其中,其中,b0b0,X=X=X X1t1t,X,X2t2t,X,XktktT T,则认为序列,则认为序列XX1t1t,X,X2t2t,X,Xktkt 是是d,bd,b阶协整,记为阶协整,记为X XttCICId,bd,b,为协整向量为协整向量cointegrated vector。如果
8、两个变量都是单整变量,只有当它们的单整如果两个变量都是单整变量,只有当它们的单整阶数相同时,才可能协整;如果它们的单整阶数阶数相同时,才可能协整;如果它们的单整阶数不相同,就不可能协整。不相同,就不可能协整。3 3个以上的变量,如果具有不同的单整阶数,有个以上的变量,如果具有不同的单整阶数,有可能经过线性组合构成低阶单整变量。可能经过线性组合构成低阶单整变量。d,d阶协整是一类非常重要的协整关系,它阶协整是一类非常重要的协整关系,它的经济意义在于:的经济意义在于:两个变量,虽然它们具有各两个变量,虽然它们具有各自的长期波动规律,但是如果它们是自的长期波动规律,但是如果它们是d,dd,d阶协整的
9、,则它们之间存在着一个长期稳定的阶协整的,则它们之间存在着一个长期稳定的比例关系。比例关系。例如,中国例如,中国CPCCPC和和GDPPCGDPPC,它们各自都是,它们各自都是2 2阶单整,如果阶单整,如果它们是它们是2,22,2阶协整,说明它们之间存在着一个长期阶协整,说明它们之间存在着一个长期稳定的比例关系,从计量经济学模型的意义上讲,建稳定的比例关系,从计量经济学模型的意义上讲,建立如下居民人均消费函数模型是合理的。立如下居民人均消费函数模型是合理的。尽管两个时间序列是非平稳的,也可以用经典尽管两个时间序列是非平稳的,也可以用经典的回归分析方法建立回归模型。的回归分析方法建立回归模型。从
10、从这这里里,我我们们已已经经初初步步认认识识到到:检检验验变变量量之之间间的的协协整整关关系系,在在建建立立计计量量经经济济学学模模型型中中是是非非常常重重要的。要的。而而且且,从从变变量量之之间间是是否否具具有有协协整整关关系系出出发发选选择择模模型型的的变变量量,其其数数据据基基础础是是牢牢固固的的,其其统统计计性性质是优良的质是优良的。二、协整检验二、协整检验EG检验检验 1 1、两变量的、两变量的Engle-GrangerEngle-Granger检验检验 为了检验两变量Yt,Xt是否为协整,Engle和Granger于1987年提出两步检验法,也称为EG检验。第一步,第一步,用OLS
11、方法估计方程 Yt=0+1Xt+t并计算非均衡误差,得到:称为协整回归协整回归cointegrating或静态回归静态回归static regression。非均衡误差的单整性的检验方法仍然是非均衡误差的单整性的检验方法仍然是DFDF检验检验或者或者ADFADF检验。检验。需要注意是,这里的需要注意是,这里的DF或或ADF检验是针对协整检验是针对协整回归计算出的误差项,而非真正的非均衡误差。回归计算出的误差项,而非真正的非均衡误差。而而OLS法采用了残差最小平方和原理,因此估法采用了残差最小平方和原理,因此估计量计量 是向下偏倚的,这样将导致拒绝零假设是向下偏倚的,这样将导致拒绝零假设的时机比
12、实际情形大。的时机比实际情形大。于是对于是对e et t平稳性检验的平稳性检验的DFDF与与ADFADF临界值应该比正临界值应该比正常的常的DFDF与与ADFADF临界值还要小。临界值还要小。MacKinnon1991通过模拟试验给出了协整检验的临界值。例例9.3.1 检验中国居民人均消费水平检验中国居民人均消费水平CPCCPC与人均国内生与人均国内生产总值产总值GDPPCGDPPC的协整关系。的协整关系。CPC与GDPPC都是I2序列,它们的回归式 R2=0.9981 对该式计算的残差序列作ADF检验,适当检验模型为:-4.47 3.93 3.05 LM1=0.00 LM2=0.00 t=-
13、4.47-3.75=ADF0.05,拒绝存在单位根的假设,残差项是平稳的。因此中国居民人均消费水平与人均中国居民人均消费水平与人均GDPGDP是是2,22,2阶协整的,说明了该两变量间存在长期稳定的阶协整的,说明了该两变量间存在长期稳定的“均衡均衡关系。关系。2 2、多变量协整关系的检验、多变量协整关系的检验扩展的扩展的E-GE-G检验检验 多变量协整关系的检验要比双变量复杂一些,主要在于协整变量间可能存在多种稳定的线性组合协整变量间可能存在多种稳定的线性组合。假设有4个I1变量Z、X、Y、W,它们有如下的长期均衡关系:非均衡误差项t应是I0序列:然而,如果Z与W,X与Y间分别存在长期均衡关系
14、:则非均衡误差项v1t、v2t一定是稳定序列I0。于是它们的任意线性组合也是稳定的。例如 由于vt象t一样,也是Z、X、Y、W四个变量的线性组合,由此vt 式也成为该四变量的另一稳定线性组合。1,-0,-1,-2,-3是对应于t 式的协整向量,1,-0-0,-1,1,-1是对应于vt式的协整向量。一定是I0序列。检验程序:检验程序:对对于于多多变变量量的的协协整整检检验验过过程程,基基本本与与双双变变量量情情形形相相同同,即即需需检检验验变变量量是是否否具具有有同同阶阶单单整整性性,以以及及是是否否存存在在稳稳定的线性组合定的线性组合。在在检检验验是是否否存存在在稳稳定定的的线线性性组组合合时
15、时,需通过设置一个变量为被解释变量,其他变量为解释变量,进行OLS估计并检验残差序列是否平稳。如如果果不不平平稳稳,则需更换被解释变量,进行同样的OLS估计及相应的残差项检验。当当所所有有的的变变量量都都被被作作为为被被解解释释变变量量检检验验之之后后,仍仍不不能能得得到到平平稳稳的的残残差差项项序序列列,则则认认为为这这些些变变量间不存在量间不存在d,dd,d阶协整。阶协整。检检验验残残差差项项是是否否平平稳稳的的DF与与ADF检检验验临临界界值值要要比比通通常常的的DF与与ADF检检验验临临界界值值小小,而而且且该该临临界界值值还还受受到到所所检检验验的变量个数的影响。的变量个数的影响。M
16、acKinnon1991通过模拟试验得到的不同变量协整检验的临界值。三、协整检验三、协整检验JJJJ检验检验教材教材6.4.36.4.3 JJ JJ检验的原理检验的原理 Johansen于于1988年,以及与年,以及与Juselius一起于一起于1990年提出了一种用向量自回归模型进行检验年提出了一种用向量自回归模型进行检验的方法,通常称为的方法,通常称为Johansen检验,或检验,或JJ检验,检验,是一种进行多重是一种进行多重I1序列协整检验的较好方序列协整检验的较好方法。法。没有移动平均项的向量自回归模型表示为:没有移动平均项的向量自回归模型表示为:差分Yt为为M个个I1过程构成的向量过
17、程构成的向量 I0过程I0过程只有产生协整,才能保证新生误差是平稳过程 将将y的协整问题转变为讨论矩阵的协整问题转变为讨论矩阵的性质问题的性质问题 于是,将于是,将yt中的协整检验变成对矩阵中的协整检验变成对矩阵的分析问题。的分析问题。这就是这就是JJ检验的基本原理。检验的基本原理。JJ JJ检验的预备工作检验的预备工作 第一步:用第一步:用OLSOLS分别估计下式中的每一个方程,分别估计下式中的每一个方程,计算残差,得到残差矩阵计算残差,得到残差矩阵S S0 0,为一个,为一个MTMT阶矩阵。阶矩阵。第一步:用第一步:用OLSOLS分别估计下式中的每一个方程,分别估计下式中的每一个方程,计算
18、残差,得到残差矩阵计算残差,得到残差矩阵S S1 1,也为一个,也为一个MTMT阶矩阵。阶矩阵。第三步:构造上述残差矩阵的积矩阵:第三步:构造上述残差矩阵的积矩阵:第四步:计算有序特征值和特征向量。第四步:计算有序特征值和特征向量。第五步:设定似然函数。第五步:设定似然函数。JJ JJ检验之一检验之一特征值轨迹检验特征值轨迹检验 服从Johansen分布。被称为特征值轨迹统计量。,一直检验下去,直到出现第一个不显著的,一直检验下去,直到出现第一个不显著的Mr为止,说明存在为止,说明存在r个协整向量。这个协整向量。这r个协整向量就是对应于最大的个协整向量就是对应于最大的r个特征值的经个特征值的经
19、过正规化的特征向量。过正规化的特征向量。JJ JJ检验之一检验之一最大特征值检验最大特征值检验 该统计量被称为最大特征值统计量。于是该检验被称为最大特征值检验。由 Johansen和Juselius于1990年计算得到 Johansen分布临界值表。JJJJ检验实例检验实例GDP、CONSR、CONSP、INV取对数后为取对数后为I1序列。即序列。即lnGDP、lnCONSR、lnCONSP、lnINV。对它们之间的协整关系进行检验。对它们之间的协整关系进行检验。两种方法的结论是一致的。两种方法的结论是一致的。如何处理高阶单整序列?如何处理高阶单整序列?从理论上讲。从理论上讲。JJ JJ 检验
20、只适用于多个检验只适用于多个1 1阶单整序列。阶单整序列。多个同阶高阶单整序列,差分为多个同阶高阶单整序列,差分为1 1阶后再检验,显阶后再检验,显然是可行的。但是意义发生变化。然是可行的。但是意义发生变化。没有看到关于高阶多重协整检验的文献,难度太大。没有看到关于高阶多重协整检验的文献,难度太大。能否先检验,然后建立均衡方程,通过对误差项的能否先检验,然后建立均衡方程,通过对误差项的单位根检验以判断发生何种协整?未见经典。单位根检验以判断发生何种协整?未见经典。如何选择截距和时间趋势项?如何选择截距和时间趋势项?分别考虑分别考虑CE和和VAR中是否有截距和时间趋势中是否有截距和时间趋势项项作
21、为假设作为假设显著性检验显著性检验重新检验重新检验对协整关系检验结果无显著影响检验统计量对协整关系检验结果无显著影响检验统计量发生变化,但临界值同时发生变化发生变化,但临界值同时发生变化如何在多个协整关系中作出选择?如何在多个协整关系中作出选择?一般选择对应于最大特征值的第一般选择对应于最大特征值的第1个协整关系个协整关系从应用的目的出发选择从应用的目的出发选择四、误差修正模型四、误差修正模型Error Correction Model,ECM1 1、一般差分模型的问题、一般差分模型的问题对于非稳定时间序列,可通过差分的方法将其对于非稳定时间序列,可通过差分的方法将其化为稳定序列,然后才可建立
22、经典的回归分析化为稳定序列,然后才可建立经典的回归分析模型。模型。模型只表达了模型只表达了X与与Y间的短期关间的短期关系,而没有揭示它们间的长期关系,而没有揭示它们间的长期关系系。关于变量水平值的重要信息关于变量水平值的重要信息将被忽略。将被忽略。误差项t不存在序列相关,t是一个一阶移动平均时间一阶移动平均时间序列序列,因而是序列相关的。是序列相关的。2 2、误差修正模型、误差修正模型是一种具有特定形式的计量经济学模型,它的是一种具有特定形式的计量经济学模型,它的主要形式是由主要形式是由DavidsonDavidson、HendryHendry、SrbaSrba和和YeoYeo于于197819
23、78年提出的,称为年提出的,称为DHSYDHSY模型。模型。由于现实经济中很少处在均衡点上,假设具有1,1阶分布滞后形式 Y Y的变化决定于的变化决定于X X的变化以及前一时期的非均衡的变化以及前一时期的非均衡程度程度。一阶误差修正模型一阶误差修正模型first-order error correction model的形式:的形式:假设假设t-1t-1时刻时刻Y Y大于其长期均衡解大于其长期均衡解 0 0+1 1X X,ecmecm为正,为正,则则-ecmecm为负,使得为负,使得 Y Yt t减少;减少;假设假设t-1t-1时刻时刻Y Y小于其长期均衡解小于其长期均衡解 0 0+1 1X
24、X ,ecmecm为为负,则负,则-ecmecm为正,使得为正,使得 Y Yt t增大。增大。表达了长期非均衡误差对短期变化的控制。表达了长期非均衡误差对短期变化的控制。复杂的复杂的ECM形式,例如:形式,例如:误差修正模型的优点:误差修正模型的优点:如:a一阶差分项的使用消除了变量可能存在的趋势因素,从而防止了虚假回归问题;b一阶差分项的使用也消除模型可能存在的多重共线性问题;c误差修正项的引入保证了变量水平值的信息没有被无视;d由于误差修正项本身的平稳性,使得该模型可以用经典的回归方法进行估计,尤其是模型中差分项可以使用通常的t检验与F检验来进行选取;等等。3 3、误差修正模型的建立、误差
25、修正模型的建立Granger 表述定理表述定理Granger representaion theorem Engle 与与 Granger 1987年提出年提出 如果变量如果变量X X与与Y Y是协整的,则它们间的短期非均是协整的,则它们间的短期非均衡关系总能由一个误差修正模型表述。衡关系总能由一个误差修正模型表述。模型中没有明确指出Y与X的滞后项数,可以是多阶滞后;由于一阶差分项是I0变量,因此模型中允许采用X的非滞后差分项Xt。建立误差修正模型建立误差修正模型,需要:首首先先对变量进行协整分析,以发现变量之间的协整关系,即长期均衡关系,并以这种关系构成误差修正项。然然后后建立短期模型,将误
26、差修正项看作一个解释变量,连同其它反映短期波动的解释变量一起,建立短期模型,即误差修正模型。Engle-Granger两步法两步法 第第一一步步,进行协整回归OLS法,检验变量间的协整关系,估计协整向量长期均衡关系参数;第第二二步步,假设协整性存在,则以第一步求到的残差作为非均衡误差项参加到误差修正模型中,并用OLS法估计相应参数。需需要要注注意意的的是是:在进行变量间的协整检验时,如有必要可在协整回归式中参加趋势项,这时,对残差项的稳定性检验就无须再设趋势项。另另外外,第二步中变量差分滞后项的多少,可以残差项序列是否存在自相关性来判断,如果存在自相关,则应参加变量差分的滞后项。用翻开误差修正
27、项括号的方法直接估计误差修用翻开误差修正项括号的方法直接估计误差修正模型。正模型。一般不采用。一般不采用。经济理论指出,居民消费支出是其实际收入的函数。以中国国民核算中的居居民民消消费费支支出出经经过过居居民民消消费费价价格格指指数缩减得到中国居民实际消费支出时间序列数缩减得到中国居民实际消费支出时间序列C;以支出法GDP对对居居民民消消费费价价格格指指数数缩缩减减近近似似地地代代表表国国民民收入时间序列收入时间序列GDP。时间段为19782000表9.3.3 例例9.3.2 中国居民消费的误差修正模型 1 1对数据对数据lnC与与lnGDP进行单整检验进行单整检验 容易验证lnC与lnGDP
28、是一阶单整的,它们适合的检验模型如下:3.81-4.01 2.66 2.26 2.54 LM1=0.38 LM2=0.67 LM3=2.34 LM4=2.46 首先,建立首先,建立lnC与与lnGDP的回归模型的回归模型2检验检验lnC与与lnGDP的协整性,并建立长期均衡关系的协整性,并建立长期均衡关系 0.30 57.48 R2=0.994 DW=0.744 发现有残关项有较强的一阶自相关性。考虑参加适当的滞后项,得lnC与lnGDP的分布滞后模型 1.63 6.62 4.92 -2.17 R2=0.994 DW=1.92 LM1=0.00 LM2=2.31自相关性消除,因此可初步认为是l
29、nC与lnGDP的长期稳定关系。残差项的稳定性检验:残差项的稳定性检验:-4.32 R2=0.994 DW=2.01 LM1=0.04 LM2=1.34 t=-4.32-3.64=ADF0.05 说明lnC与lnGDP是1,1阶协整的,下式即为它们长期稳定的均衡关系:以稳定的时间序列3建立误差修正模型建立误差修正模型 做为误差修正项,可建立如下误差修正模型误差修正模型:6.96 2.96 -1.91 -3.15 R2=0.994 DW=2.06 LM1=0.70 LM2=2.04由式 可得lnC关于lnGDP的长期弹性:0.698-0.361/1-0.622=0.892;由*式可得lnC关于l
30、nGDP的短期弹性:0.686*用翻开误差修正项括号的方法直接估计误差修正模型翻开误差修正项括号的方法直接估计误差修正模型,适当估计式为:1.636.62 -2.99 2.88 R2=0.791 =0.0064 DW=1.93 LM2=2.31 LM3=2.78 写成误差修正模型的形式如下 由上式知,lnC关于lnGDP的短期弹性为0.698,长期弹性为0.892。可见两种方法的结果非常接近两种方法的结果非常接近。4预测预测由式给出1998年关于长期均衡点的偏差:=ln18230-0.152-0.698ln39008-0.662ln17072 +0.361ln36684=0.0125 由式预测
31、1999年的短期波动:lnC99=0.686ln41400-ln39008+0.784ln18230-ln17072 -0.484 ln 39008-ln 36684 -1.1630.0125=0.048于是 按照式预测的结果为:lnC99=0.698ln41400-ln39008-0.378ln18230-0.405 -0.892ln39008=0.051 以当年价计的1999年实际居民消费支出为39334亿元,用居民消费价格指数1990=100紧缩后约为19697亿元,两个预测结果的相对误差分别为两个预测结果的相对误差分别为2.9%与与2.6%。于是本资料来源9、静夜四无邻,荒居旧业贫。4
32、月-234月-23Monday,April 17,202310、雨中黄叶树,灯下白头人。21:50:0221:50:0221:504/17/2023 9:50:02 PM11、以我独沈久,愧君相见频。4月-2321:50:0221:50Apr-2317-Apr-2312、故人江海别,几度隔山川。21:50:0221:50:0221:50Monday,April 17,202313、乍见翻疑梦,相悲各问年。4月-234月-2321:50:0221:50:02April 17,202314、他乡生白发,旧国见青山。17 四月 20239:50:02 下午21:50:024月-2315、比不了得就不
33、比,得不到的就不要。四月 239:50 下午4月-2321:50April 17,202316、行动出成果,工作出财富。2023/4/17 21:50:0221:50:0217 April 202317、做前,能够环视四周;做时,你只能或者最好沿着以脚为起点的射线向前。9:50:02 下午9:50 下午21:50:024月-239、没有失败,只有暂时停止成功!。4月-234月-23Monday,April 17,202310、很多事情努力了未必有结果,但是不努力却什么改变也没有。21:50:0221:50:0221:504/17/2023 9:50:02 PM11、成功就是日复一日那一点点小小
34、努力的积累。4月-2321:50:0221:50Apr-2317-Apr-2312、世间成事,不求其绝对圆满,留一份缺乏,可得无限完美。21:50:0221:50:0221:50Monday,April 17,202313、不知香积寺,数里入云峰。4月-234月-2321:50:0221:50:02April 17,202314、意志坚强的人能把世界放在手中像泥块一样任意揉捏。17 四月 20239:50:02 下午21:50:024月-2315、楚塞三湘接,荆门九派通。四月 239:50 下午4月-2321:50April 17,202316、少年十五二十时,步行夺得胡马骑。2023/4/1
35、7 21:50:0221:50:0217 April 202317、空山新雨后,天气晚来秋。9:50:02 下午9:50 下午21:50:024月-239、杨柳散和风,青山澹吾虑。4月-234月-23Monday,April 17,202310、阅读一切好书如同和过去最杰出的人谈话。21:50:0221:50:0221:504/17/2023 9:50:02 PM11、越是没有本领的就越加自命非凡。4月-2321:50:0221:50Apr-2317-Apr-2312、越是无能的人,越喜欢挑剔别人的错儿。21:50:0221:50:0221:50Monday,April 17,202313、知
36、人者智,自知者明。胜人者有力,自胜者强。4月-234月-2321:50:0221:50:02April 17,202314、意志坚强的人能把世界放在手中像泥块一样任意揉捏。17 四月 20239:50:02 下午21:50:024月-2315、最具挑战性的挑战莫过于提升自我。四月 239:50 下午4月-2321:50April 17,202316、业余生活要有意义,不要越轨。2023/4/17 21:50:0221:50:0217 April 202317、一个人即使已登上顶峰,也仍要自强不息。9:50:02 下午9:50 下午21:50:024月-23MOMODA POWERPOINTLorem ipsum dolor sit amet,consectetur adipiscing elit.Fusce id urna blandit,eleifend nulla ac,fringilla purus.Nulla iaculis tempor felis ut cursus.感感 谢谢 您您 的的 下下 载载 观观 看看专家告诉