2022-2023学年福建省厦门市思明区湖滨中学中考二模数学试题含解析.doc

上传人:茅**** 文档编号:87800791 上传时间:2023-04-17 格式:DOC 页数:14 大小:476KB
返回 下载 相关 举报
2022-2023学年福建省厦门市思明区湖滨中学中考二模数学试题含解析.doc_第1页
第1页 / 共14页
2022-2023学年福建省厦门市思明区湖滨中学中考二模数学试题含解析.doc_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《2022-2023学年福建省厦门市思明区湖滨中学中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年福建省厦门市思明区湖滨中学中考二模数学试题含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图的平面图形绕直线l旋转一周,可以得到的立体图形是( )ABCD2如图,为的直径,为上两点,若,则的大小为()A60B50C40D203已知圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,要使这两圆没有公共点,那么d的值可以取

2、( )A11;B6;C3;D14生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x名同学,则根据题意列出的方程是( )Ax(x+1)=132Bx(x-1)=132Cx(x+1)=132Dx(x-1)=13225的相反数是 ( )A6B6CD6如图所示,二次函数y=ax2+bx+c(a0)的图象经过点(1,2),且与x轴交点的横坐标分别为x1、x2,其中2x11,0x21下列结论:4a2b+c0;2ab0;abc0;b2+8a4ac其中正确的结论有()A1个B2个C3个D4个7下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A2B1C0D

3、18在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”已知O是以原点为圆心,半径为 圆,则O的“整点直线”共有( )条A7B8C9D109下列解方程去分母正确的是( )A由,得2x133xB由,得2x2x4C由,得2y-15=3yD由,得3(y+1)2y+610如图,在ABC中,DEBC,若,则等于( )ABCD二、填空题(共7小题,每小题3分,满分21分)11分解因:=_12如图,A,B两点被池塘隔开,不能直接测量其距离于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AMAC,BNBC,测得

4、MN200m,则A,B间的距离为_m13如图,直线经过、两点,则不等式的解集为_.14计算:|5|=_15如果a,b分别是2016的两个平方根,那么a+bab=_16已知关于x的方程x22xm=0没有实数根,那么m的取值范围是_17已知,如图,正方形ABCD的边长是8,M在DC上,且DM2,N是AC边上的一动点,则DN+MN的最小值是_三、解答题(共7小题,满分69分)18(10分)某公司销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示AB进价(万元/套)1.51.2售价(万元/套)1.81.4该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元(1)该

5、公司计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?19(5分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁现在任意取出一把钥匙去开任意一把锁(1)请用列表或画树状图的方法表示出上述试验所有可能结果; (2)求一次打开锁的概率20(8分)已知RtABC中,ACB90,CACB4,另有一块等腰直角三角板的直角顶点放在C处,CP

6、CQ2,将三角板CPQ绕点C旋转(保持点P在ABC内部),连接AP、BP、BQ如图1求证:APBQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系21(10分)如图,点D为ABC边上一点,请用尺规过点D,作ADE,使点E在AC上,且ADE与ABC相似.(保留作图痕迹,不写作法,只作出符合条件的一个即可)22(10分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低

7、0.1万元/部月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元 若该公司当月卖出3部汽车,则每部汽车的进价为 万元; 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)23(12分)如图,正方形ABCD中,E,F分别为BC,CD上的点,且AEBF,垂足为G(1)求证:AEBF;(2)若BE,AG2,求正方形的边长24(14分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b6|=0,点B在第一象限

8、内,点P从原点出发,以每秒2个单位长度的速度沿着OCBAO的线路移动a= ,b= ,点B的坐标为 ;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.【详解】由图可知所给的平面图形是一个长方形,长方形绕一边所在直线旋转一周得圆柱,故选B.【点睛】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键2、B【解析】根据题意连接AD,再根据同弧的圆周角相等,即可计算的

9、的大小.【详解】解:连接,为的直径,故选:B【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.3、D【解析】圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,当d4+7或d11或d两圆半径的和;(1)两圆内含,此时圆心距kx+b-2的解集为.14、1【解析】分析:直接利用二次根式以及绝对值的性质分别化简得出答案详解:原式=5-3=1故答案为1.点睛:此题主要考查了实数运算,正确化简各数是解题关键15、1【解析】先由平方根的应用得出a,b的值,进而得出a+b=0,代入即可得出结论【详解】a,b分别是1的两个平方根, a,b分别是1的两个平方根,a+b=0,ab=

10、a(a)=a2=1,a+bab=0(1)=1,故答案为:1【点睛】此题主要考查了平方根的性质和意义,解本题的关键是熟练掌握平方根的性质16、m1【解析】根据根的判别式得出b24ac0,代入求出不等式的解集即可得到答案【详解】关于x的方程x22xm=0没有实数根,b24ac=(2)241(m)0,解得:m1,故答案为:m1【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当0时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当0时,一元二次方程没有实数根.17、1【解析】分析:

11、要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解解答:解:如图,连接BM,点B和点D关于直线AC对称,NB=ND,则BM就是DN+MN的最小值,正方形ABCD的边长是8,DM=2,CM=6,BM=1,DN+MN的最小值是1故答案为1点评:考查正方形的性质和轴对称及勾股定理等知识的综合应用三、解答题(共7小题,满分69分)18、(1)该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套;(2)A种品牌的教学设备购进数量至多减少1套 【解析】(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,根据花11万

12、元购进两种设备销售后可获得利润12万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,根据总价=单价数量结合用于购进这两种教学设备的总资金不超过18万元,即可得出关于m的一元一次不等式,解之取其中最大的整数即可得出结论【详解】解:(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,根据题意得:解得:答:该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,根据题意得:1.5(2

13、0m)+1.2(30+1.5m)18,解得:m,m为整数,m1答:A种品牌的教学设备购进数量至多减少1套【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式19、(1)详见解析(2)【解析】设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出树形图,再根据概率公式求解即可.【详解】(1)设两把不同的锁分别为A、B,能把两锁打开的钥匙分别为、,其余两把钥匙分别为、,根据题意,可以画出如下树形图:由上图可知,上述试验共有8种等可能结果;(

14、2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等P(一次打开锁)【点睛】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率20、(1)证明见解析(2) (3)EP+EQ= EC【解析】(1)由题意可得:ACP=BCQ,即可证ACPBCQ,可得 AP=CQ;作 CHPQ 于 H,由题意可求 PQ=2 ,可得 CH=,根据勾股定理可求AH= ,即可求 AP 的长;作 CMBQ 于 M,CNEP 于 N,设 BC 交 AE 于 O,由题意可证CNP CMQ,可得 CN=CM,QM=PN,即可证

15、RtCEMRtCEN,EN=EM,CEM=CEN=45,则可求得 EP、EQ、EC 之间的数量关系【详解】解:(1)如图 1 中,ACB=PCQ=90,ACP=BCQ 且 AC=BC,CP=CQACPBCQ(SAS)PA=BQ如图 2 中,作 CHPQ 于 HA、P、Q 共线,PC=2,PQ=2,PC=CQ,CHPQCH=PH= 在 RtACH 中,AH= PA=AHPH= -解:结论:EP+EQ= EC理由:如图 3 中,作 CMBQ 于 M,CNEP 于 N,设 BC 交 AE 于 OACPBCQ,CAO=OBE,AOC=BOE,OEB=ACO=90,M=CNE=MEN=90,MCN=PC

16、Q=90,PCN=QCM,PC=CQ,CNP=M=90,CNPCMQ(AAS),CN=CM,QM=PN,CE=CE,RtCEMRtCEN(HL),EN=EM,CEM=CEN=45EP+EQ=EN+PN+EMMQ=2EN,EC=EN,EP+EQ=EC【点睛】本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形21、见解析【解析】以DA为边、点D为顶点在ABC内部作一个角等于B,角的另一边与AC的交点即为所求作的点【详解】解:如图,点E即为所求作的点【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作DEBC并熟练掌握做一个角

17、等于已知角的作法式解题的关键22、解:(1)22.1(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:21270.1(x1)=(0.1x0.9)(万元),当0x10,根据题意,得x(0.1x0.9)0.3x=12,整理,得x214x120=0,解这个方程,得x1=20(不合题意,舍去),x2=2当x10时,根据题意,得x(0.1x0.9)x=12,整理,得x219x120=0,解这个方程,得x1=24(不合题意,舍去),x2=3310,x2=3舍去答:要卖出2部汽车【解析】一元二次方程的应用(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价

18、均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:270.12=22.1,(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0x10,以及当x10时,分别讨论得出即可23、(1)见解析;(2)正方形的边长为.【解析】(1)由正方形的性质得出ABBC,ABCC90,BAE+AEB90,由AEBF,得出CBF+AEB90,推出BAECBF,由ASA证得ABEBCF即可得出结论;(2)证出BGEABE90,BEGAEB,得出BGEABE,得出BE2EGAE,设EGx,则AEAG+EG2+x,代入求出x,求得AE3,由勾股定理即可得出结果【详解】(1)证明:四边

19、形ABCD是正方形,ABBC,ABCC90,BAE+AEB90,AEBF,垂足为G,CBF+AEB90,BAECBF,在ABE与BCF中,ABEBCF(ASA),AEBF;(2)解:四边形ABCD为正方形,ABC90,AEBF,BGEABE90,BEGAEB,BGEABE,即:BE2EGAE, 设EGx,则AEAG+EG2+x,()2x(2+x),解得:x11,x23(不合题意舍去),AE3,AB【点睛】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握正方形的性质,证明三角形全等与相似是解题的关键24、(1)4,6,(4,6);(2)点P在线段C

20、B上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒【解析】试题分析:(1)根据可以求得的值,根据长方形的性质,可以求得点的坐标;(2)根据题意点从原点出发,以每秒2个单位长度的速度沿着的线路移动,可以得到当点移动4秒时,点的位置和点的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点移动的时间即可试题解析:(1)a、b满足a4=0,b6=0,解得a=4,b=6,点B的坐标是(4,6),故答案是:4,6,(4,6);(2)点P从原点出发,以每秒2个单位长度的速度沿着OCBAO的线路移动,24=8,OA=4,OC=6,当点P移动4秒时,在线段CB上,离点C的距离是:86=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:52=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁