2022-2023学年浙江省温州市名校十校联考最后数学试题含解析.doc

上传人:茅**** 文档编号:87800100 上传时间:2023-04-17 格式:DOC 页数:20 大小:948KB
返回 下载 相关 举报
2022-2023学年浙江省温州市名校十校联考最后数学试题含解析.doc_第1页
第1页 / 共20页
2022-2023学年浙江省温州市名校十校联考最后数学试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2022-2023学年浙江省温州市名校十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年浙江省温州市名校十校联考最后数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列分式中,最简分式是( )ABCD2如图,在正方形ABCD中,AB,P为对角线AC上的动点,PQAC交折线ADC于点Q,设APx,APQ的面积为y,则y与x的函数图象正确的是()ABCD3某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成

2、绩的频数分布直方图如图所示,成绩的中位数落在( )A50.560.5 分B60.570.5 分C70.580.5 分D80.590.5 分4下列等式正确的是()Ax3x2=xBa3a3=aCD(7)4(7)2=725为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表则这9名学生每周做家务劳动的时间的众数及中位数分别是()每周做家务的时间(小时)01234人数(人)22311A3,2.5B1,2C3,3D2,26如图,小明将一张长为20cm,宽为15cm的长方形纸(AEDE)剪去了一角,量得AB3cm,CD4cm,则剪去的直角三角形的斜边长为()A5c

3、mB12cmC16cmD20cm7若O的半径为5cm,OA=4cm,则点A与O的位置关系是( )A点A在O内B点A在O上C点A在O外D内含8在函数y中,自变量x的取值范围是( )Ax1Bx1且x0Cx0且x1Dx0且x19一组数据:6,3,4,5,7的平均数和中位数分别是 ( )A5,5B5,6C6,5D6,610若关于x的一元二次方程x22x+m0没有实数根,则实数m的取值是( )Am1Bm1Cm1Dm1二、填空题(本大题共6个小题,每小题3分,共18分)11已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 12如图,长方体的底面边长分别为1cm 和3cm,高为6cm如果用一根

4、细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_cm13二次函数中的自变量与函数值的部分对应值如下表:则的解为_14如图,在ABC中,ACB=90,B=60,AB=12,若以点A为圆心, AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为_(保留根号和)15如图,已知A+C=180,APM=118,则CQN=_16因式分解:4x2y9y3_三、解答题(共8题,共72分)17(8分)某商店准备购进甲、乙两种商品已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元(1)若该商店同时购进甲、乙两种商品共100件,恰好用

5、去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价进价)18(8分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3)(1)求抛物线L的顶点坐标和A点坐标(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m0)是抛物线L2上的一点,是否存在点P,使得PAC为等腰直角三角形,若存在,

6、请直接写出抛物线L2的表达式,若不存在,请说明理由19(8分)(1)化简:(2)解不等式组20(8分)如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点(1)求抛物线的解析式,并直接写出点D的坐标;(2)当AMN的周长最小时,求t的值;(3)如图,过点M作MEx轴,交抛物线y=ax2+bx于点E,连接EM,AE,当AME与DOC相似时请直接写出所有符合条件的点M坐标21(8分)如图,已知抛物线yax2+bx+1经过A(1,0),B(1,1)两点(1)求该抛物线的解析式

7、;(2)阅读理解:在同一平面直角坐标系中,直线l1:yk1x+b1(k1,b1为常数,且k10),直线l2:yk2x+b2(k2,b2为常数,且k20),若l1l2,则k1k21解决问题:若直线y2x1与直线ymx+2互相垂直,则m的值是_;抛物线上是否存在点P,使得PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值22(10分)如图,在ABC中,点D,E分别在边AB,AC上,AED=B,射线AG分别交线段DE,BC于点F,G,且求证:ADFACG;若,求的值 23(

8、12分)如图,AB为圆O的直径,点C为圆O上一点,若BAC=CAM,过点C作直线l垂直于射线AM,垂足为点D(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且CAB=30,求AD的长24如图,在平面直角坐标系xOy中,函数()的图象经过点,ABx轴于点B,点C与点A关于原点O对称, CDx轴于点D,ABD的面积为8.(1)求m,n的值;(2)若直线(k0)经过点C,且与x轴,y轴的交点分别为点E,F,当时,求点F的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】试题分析:选项A为最简分式;选项B化简可得原式=;选项

9、C化简可得原式=;选项D化简可得原式=,故答案选A.考点:最简分式.2、B【解析】在正方形ABCD中, AB=,AC4,ADDC,DAPDCA45o,当点Q在AD上时,PAPQ,DP=AP=x,S ;当点Q在DC上时,PCPQCP4x,S;所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,故选B.【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况3、C【解析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.580.5分这一分组内,据此可得详解:由频数分布直方图知,这组数

10、据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.580.5分这一分组内,所以中位数落在70.580.5分故选C点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数4、C【解析】直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案【详解】解:A、x3-x2,无法计算,故此选项错误;B、a3a3=1,故此选项错误;C、(-2)2(-

11、2)3=-,正确;D、(-7)4(-7)2=72,故此选项错误;故选C【点睛】此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键5、D【解析】试题解析:表中数据为从小到大排列数据1小时出现了三次最多为众数;1处在第5位为中位数所以本题这组数据的中位数是1,众数是1故选D考点:1.众数;1.中位数.6、D【解析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1则剪去的直角三角形的斜边长为1

12、cm故选D【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算7、A【解析】直接利用点与圆的位置关系进而得出答案【详解】解:O的半径为5cm,OA=4cm,点A与O的位置关系是:点A在O内故选A【点睛】此题主要考查了点与圆的位置关系,正确点P在圆外dr,点P在圆上d=r,点P在圆内dr是解题关键8、C【解析】根据分式和二次根式有意义的条件进行计算即可【详解】由题意得:x2且x22解得:x2且x2故x的取值范围是x2且x2故选C【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键9、A【解析】试题分析:根据平

13、均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答平均数为:(6+3+4+1+7)=1,按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1故选A考点:中位数;算术平均数.10、C【解析】试题解析:关于的一元二次方程没有实数根,解得:故选C二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】试题分析:因为2+24,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1考点:等腰三角形的性质;三角形三边关系12、1【解析】要求所用细线的最短距离,需将长方体的侧面展开,进

14、而根据“两点之间线段最短”得出结果【详解】解:将长方体展开,连接A、B,AA=1+3+1+3=8(cm),AB=6cm,根据两点之间线段最短,AB=1cm故答案为1考点:平面展开-最短路径问题13、或【解析】由二次函数y=ax2+bx+c(a0)过点(-1,-2),(0,-2),可求得此抛物线的对称轴,又由此抛物线过点(1,0),即可求得此抛物线与x轴的另一个交点继而求得答案.【详解】解:二次函数y=ax2+bx+c(a0)过点(-1,-2),(0,-2),此抛物线的对称轴为:直线x=-,此抛物线过点(1,0),此抛物线与x轴的另一个交点为:(-2,0),ax2+bx+c=0的解为:x=-2或

15、1故答案为x=-2或1.【点睛】此题考查了抛物线与x轴的交点问题此题难度适中,注意掌握二次函数的对称性是解此题的关键.14、1518.【解析】根据扇形的面积公式:S=分别计算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面积,最后由S阴影部分=S扇形ACE+S扇形BCD-SABC即可得到答案【详解】S阴影部分=S扇形ACE+S扇形BCD-SABC,S扇形ACE=12,S扇形BCD=3,SABC=66=18,S阴影部分=12+318=1518.故答案为1518.【点睛】本题考查了扇形面积的计算,解题的关键是熟练的掌握扇形的面积公式.15、1【解析】先根据同旁内角互补两直线平行知ABCD,据

16、此依据平行线性质知APM=CQM=118,由邻补角定义可得答案【详解】解:A+C=180,ABCD,APM=CQM=118,CQN=180-CQM=1,故答案为:1【点睛】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系平行线的性质是由平行关系来寻找角的数量关系16、y(2x+3y)(2x-3y)【解析】直接提取公因式y,再利用平方差公式分解因式即可【详解】4x2y9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键三、解答题(共8题,共72分)17、 (1) 商

17、店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元【解析】(1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,得到购进甲、乙两种商品的件数;(2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示

18、总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润【详解】(1)设购进甲种商品x件,购进乙商品y件,根据题意得:,解得:,答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a件,则购进乙种商品(100a)件,根据题意列得:,解得:20a22,总利润W=5a+10(100a)=5a+1000,W是关于a的一次函数,W随a的增大而减小,当a=20时,W有最大值,此时W=900,且10020=80,答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元【点睛】此题考查了二元一次方程组的应用,一次函数

19、的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键18、(1)顶点(-2,-1) A (-1,0); (2)y=(x-2)2+1; (3) y=x2-x+3, ,y=x2-4x+3, .【解析】(1)将点B和点C代入求出抛物线L即可求解.(2)将抛物线L化顶点式求出顶点再根据关于原点对称求出即可求解.(3)将使得PAC为等腰直角三角形,作出所有点P的可能性,求出代入即可求解.【详解】(1)将点B(-3,0),C(0,3)代入抛物线得:,解得,则抛物线.抛物线与x轴交于点A, ,A (-1,0),抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1).(2)抛物线L

20、化顶点式可得,由此可得顶点坐标顶点(-2,-1)抛物线L1的顶点与抛物线L的顶点关于原点对称,对称顶点坐标为(2,1),即将抛物线向右移4个单位,向上移2个单位.(3) 使得PAC为等腰直角三角形,作出所有点P的可能性.是等腰直角三角形,求得.,同理得,由题意知抛物线并将点代入得:.【点睛】本题主要考查抛物线综合题,讨论出P点的所有可能性是解题关键.19、(1);(2)2x1【解析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可【详解】(1)原式;(2)不等式组整理得:, 则不等式组

21、的解集为2x1【点睛】此题考查计算能力,(1)考查分式的化简,正确将分子与分母分解因式及按照正确运算顺序进行计算是解题的关键;(2)是解不等式组,注意系数化为1时乘或除以的是负数时要变号.20、(1)y=x2x,点D的坐标为(2,);(2)t=2;(3)M点的坐标为(2,0)或(6,0)【解析】(1)利用待定系数法求抛物线解析式;利用配方法把一般式化为顶点式得到点D的坐标;(2)连接AC,如图,先计算出AB=4,则判断平行四边形OCBA为菱形,再证明AOC和ACB都是等边三角形,接着证明OCMACN得到CM=CN,OCM=ACN,则判断CMN为等边三角形得到MN=CM,于是AMN的周长=OA+

22、CM,由于CMOA时,CM的值最小,AMN的周长最小,从而得到t的值;(3)先利用勾股定理的逆定理证明OCD为直角三角形,COD=90,设M(t,0),则E(t,t2-t),根据相似三角形的判定方法,当时,AMECOD,即|t-4|:4=|t2-t |:,当时,AMEDOC,即|t-4|:=|t2-t |:4,然后分别解绝对值方程可得到对应的M点的坐标【详解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,抛物线解析式为y=x2-x;y=x2-x =-2) 2-;点D的坐标为(2,-);(2)连接AC,如图,AB=4,而OA=4,平行四边形OCBA为菱形,OC=BC=4,C

23、(2,2),AC=4,OC=OA=AC=AB=BC,AOC和ACB都是等边三角形,AOC=COB=OCA=60,而OC=AC,OM=AN,OCMACN,CM=CN,OCM=ACN,OCM+ACM=60,ACN+ACM=60,CMN为等边三角形,MN=CM,AMN的周长=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,当CMOA时,CM的值最小,AMN的周长最小,此时OM=2,t=2;(3)C(2,2),D(2,-),CD=,OD=,OC=4,OD2+OC2=CD2,OCD为直角三角形,COD=90,设M(t,0),则E(t,t2-t),AME=COD,当时,AMECOD,即|t-4|

24、:4=|t2-t |:,整理得|t2-t|=|t-4|,解方程t2-t =(t-4)得t1=4(舍去),t2=2,此时M点坐标为(2,0);解方程t2-t =-(t-4)得t1=4(舍去),t2=-2(舍去);当时,AMEDOC,即|t-4|:=|t2-t |:4,整理得|t2-t |=|t-4|,解方程t2-t =t-4得t1=4(舍去),t2=6,此时M点坐标为(6,0);解方程t2-t =-(t-4)得t1=4(舍去),t2=-6(舍去);综上所述,M点的坐标为(2,0)或(6,0)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、平行四边形的性质和

25、菱形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;熟练掌握相似三角形的判定方法;会运用分类讨论的思想解决数学问题21、(1)yx2+x+1;(2)-;点P的坐标(6,14)(4,5);(3).【解析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;(3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A,B点坐标代入,得,解得,抛物线的解析式为

26、y;(2)由直线y2x1与直线ymx+2互相垂直,得2m1,即m;故答案为;AB的解析式为当PAAB时,PA的解析式为y2x2,联立PA与抛物线,得,解得(舍),即P(6,14);当PBAB时,PB的解析式为y2x+3,联立PB与抛物线,得,解得(舍),即P(4,5),综上所述:PAB是以AB为直角边的直角三角形,点P的坐标(6,14)(4,5);(3)如图:,M(t,t2+t+1),Q(t, t+),MQt2+SMABMQ|xBxA|(t2+)2t2+,当t0时,S取最大值,即M(0,1)由勾股定理,得AB,设M到AB的距离为h,由三角形的面积,得h点M到直线AB的距离的最大值是【点睛】本题

27、考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键22、 (1)证明见解析;(2)1.【解析】(1)欲证明ADFACG,由可知,只要证明ADF=C即可(2)利用相似三角形的性质得到,由此即可证明【解答】(1)证明:AED=B,DAE=DAE,ADF=C,ADFACG(2)解:ADFACG,又,123、(1)CD与圆O的位置关系是相切,理由详见解析;(2) AD=【解析】(1)连接OC,求出OC和AD平行,求出OCCD,根据切线的判定得出即可;(2)连接BC,解直角三角形求出BC和AC,求出BCACDA,得出

28、比例式,代入求出即可【详解】(1)CD与圆O的位置关系是相切,理由是:连接OC,OA=OC,OCA=CAB,CAB=CAD,OCA=CAD,OCAD,CDAD,OCCD,OC为半径,CD与圆O的位置关系是相切;(2)连接BC,AB是O的直径,BCA=90,圆O的半径为3,AB=6,CAB=30, BCA=CDA=90,CAB=CAD,CABDAC, 【点睛】本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键24、(1)m=8,n=-2;(2) 点F的坐标为,【解析】分析:(1)利用三角形的面积公式构建方程求出n,再利用

29、待定系数法求出m的的值即可;(2)分两种情形分别求解如图,当k0时,设直线y=kx+b与x轴,y轴的交点分别为点,.详解:(1)如图 点A的坐标为,点C与点A关于原点O对称, 点C的坐标为 ABx轴于点B,CDx轴于点D, B,D两点的坐标分别为, ABD的面积为8, 解得 函数()的图象经过点, (2)由(1)得点C的坐标为 如图,当时,设直线与x轴,y轴的交点分别为点,由 CDx轴于点D可得CD CD O , 点的坐标为 如图,当时,设直线与x轴,y轴的交点分别为点,同理可得CD, , 为线段的中点, 点的坐标为综上所述,点F的坐标为,点睛:本题考查了反比例函数综合题、一次函数的应用、三角形的面积公式等知识,解题的关键是会用方程的思想思考问题,会用分类讨论的思想思考问题,属于中考压轴题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁