《2022-2023学年河北省张家口市桥西区中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年河北省张家口市桥西区中考数学全真模拟试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在ABC中,C90,AD是BAC的角平分线,若CD2,AB8,则ABD的面积是()A6B8C10D122在,,则的值为( )ABCD3下列图形中,既是中心对称,又是轴对称的是()ABCD4从中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()ABCD5计算8+3的结果是(
2、)A11B5C5D116完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A6(mn)B3(m+n)C4nD4m7如图,AB是O的直径,弦CDAB于E,CDB=30,O的半径为,则弦CD的长为( )AB3cmCD9cm8小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A30和 20 B30和25 C30和22.5 D30和17.59如图,ABBD,CDBD,垂足分别为B、D,AC和BD相交于点E,EFBD垂足为F则下列结论错误的是()ABCD10分别写有数字0,1,2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张
3、,那么抽到负数的概率是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11化简:=_12如图所示,ABC的顶点是正方形网格的格点,则sinA的值为_13若m+=3,则m2+=_14如图,平行四边形ABCD中,AB=AC=4,ABAC,O是对角线的交点,若O过A、C两点,则图中阴影部分的面积之和为_15哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_16如图,ABC中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设=,=,用,表示,那么=_17如图,菱形ABCD和菱形CEFG中,ABC6
4、0,点B,C,E在同一条直线上,点D在CG上,BC1,CE3,H是AF的中点,则CH的长为_.三、解答题(共7小题,满分69分)18(10分)如图所示,直线y=2x+b与反比例函数y=交于点A、B,与x轴交于点C(1)若A(3,m)、B(1,n)直接写出不等式2x+b的解(2)求sinOCB的值(3)若CBCA=5,求直线AB的解析式19(5分)全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分,运动形式ABCDE人
5、数请你根据以上信息,回答下列问题:接受问卷调查的共有 人,图表中的 , .统计图中,类所对应的扇形的圆心角的度数是 度.揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.20(8分)如图,在RtABC与RtABD中,ABC=BAD=90,AD=BC,AC,BD相交于点G,过点A作AEDB交CB的延长线于点E,过点B作BFCA交DA的延长线于点F,AE,BF相交于点H图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)证明:四边形AHBG是菱形;若使四边形AHBG是正方形,还需在RtABC的边长之间再添加
6、一个什么条件?请你写出这个条件(不必证明)21(10分)计算:(2)3+(3)(4)2+2(3)2(2)22(10分)如图,已知正比例函数y=2x与反比例函数y=(k0)的图象交于A、B两点,且点A的横坐标为4,(1)求k的值;(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;(3)过原点O的另一条直线l交双曲线y=(k0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标23(12分)如图,ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到
7、端点时,另一个动点也相应停止运动,设运动的时间为t用含t的代数式表示:AP= ,AQ= 当以A,P,Q为顶点的三角形与ABC相似时,求运动时间是多少?24(14分)观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数61012棱数912面数58观察上表中的结果,你能发现、之间有什么关系吗?请写出关系式.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】分析:过点D作DEAB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解详解:如图,过点D作DEAB于E,AB=8,CD=
8、2,AD是BAC的角平分线, DE=CD=2,ABD的面积 故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.2、A【解析】本题可以利用锐角三角函数的定义求解即可【详解】解:tanA=,AC=2BC,tanA=故选:A【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 3、C【解析】根据中心对称图形,轴对称图形的定义进行判断【详解】A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误故选C【点睛】本题考
9、查了中心对称图形,轴对称图形的判断关键是根据图形自身的对称性进行判断4、C【解析】根据正方形的判定定理即可得到结论【详解】与左边图形拼成一个正方形,正确的选择为,故选C【点睛】本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.5、B【解析】绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值互为相反数的两个数相加得1依此即可求解【详解】解:832故选B【点睛】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1从而确定用那一条法则在应用过程中,要牢记“先符号,后绝对值”6、D【解
10、析】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m故选D7、B【解析】解:CDB=30,COB=60,又OC=,CDAB于点E,解得CE=cm,CD=3cm故选B考点:1垂径定理;2圆周角定理;3特殊角的三角函数值8、C【解析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为=22.5,
11、故选:C【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错9、A【解析】利用平行线的性质以及相似三角形的性质一一判断即可【详解】解:ABBD,CDBD,EFBD,ABCDEFABEDCE,故选项B正确,EFAB,故选项C,D正确,故选:A【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型10、B【解析】试题分析:根据概率的求法,找准
12、两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,1,2,1,3中任抽一张,那么抽到负数的概率是.故选B.考点:概率.二、填空题(共7小题,每小题3分,满分21分)11、6【解析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:【详解】,故答案为-612、【解析】解:连接CE,根据图形可知DC=1,AD=3,AC=,BE=CE=,EBC=ECB=45,CEAB,sinA=,故答案为考点:勾股定理;三角形的面积;锐角三角函数的定义13、7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案详解:把m+=3两边
13、平方得:(m+)2=m2+2=9,则m2+=7,故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键14、1【解析】AOB=COD,S阴影=SAOB四边形ABCD是平行四边形,OA=AC=1=2ABAC,S阴影=SAOB=OAAB=21=1【点睛】本题考查了扇形面积的计算15、10%【解析】设平均每次上调的百分率是x,因为经过两次上调,且知道调前的价格和调后的价格,从而列方程求出解【详解】设平均每次上调的百分率是x,依题意得,解得:,(不合题意,舍去)答:平均每次上调的百分率为10%故答案是:10%【点睛】此题考查了一元二次方程的应用解题关键是要读
14、懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解16、【解析】连接AG,延长AG交BC于F首先证明DG=GE,再利用三角形法则求出即可解决问题【详解】连接AG,延长AG交BC于FG是ABC的重心,DEBC,BF=CF,BF=CF,DG=GE,故答案为【点睛】本题考查三角形的重心,平行线的性质,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型17、【解析】连接AC、CF,GE,根据菱形性质求出AC、CF,再求出ACF=90,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:如图,连接AC、CF、GE,CF和GE相交于O
15、点在菱形ABCD中, ,BC=1,AC=1, 在菱形CEFG中,是它的对角线,=,在,又H是AF的中点.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,菱形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键三、解答题(共7小题,满分69分)18、(1) x3或0x1;(2);(3)y=2x2【解析】(1)不等式的解即为函数y=2x+b的图象在函数y=上方的x的取值范围可由图象直接得到(2)用b表示出OC和OF的长度,求出CF的长,进而求出sinOCB(3)求直线AB的解析式关键是求出b的值【详解】解:(1)如图:由图象得:不等式2x+b的解是x3或0x1;(2)设
16、直线AB和y轴的交点为F当y=0时,x=,即OC=;当x=0时,y=b,即OF=b,CF=,sinOCB=sinOCF=(3)过A作ADx轴,过B作BEx轴,则AC=AD=,BC=,ACBC=(yA+yB)=(xA+xB)=5,又2x+b=,所以2x2+bxk=0,b=5,b=,y=2x2【点睛】这道题主要考查反比例函数的图象与一次函数的交点问题,借助图象分析之间的关系,体现数形结合思想的重要性19、(1)150、45、36;(2)28.8;(3)450人【解析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360
17、乘以A项目人数占总人数的比例可得;(3)利用总人数乘以样本中C人数所占比例可得【详解】解:(1)接受问卷调查的共有3020%=150人,m=150-(12+30+54+9)=45,n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为故答案为:28.8;(3)(人)答:估计该社区参加碧沙岗“暴走团”的大约有450人【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键扇形统计图直接反映部分占总体的百分比大小20、 (1)详见解析;(2)详见解析;(3)需要添加的条件是AB=BC【解析】试题分析:(1)可根据已知条件,或
18、者图形的对称性合理选择全等三角形,如ABCBAD,利用SAS可证明(2)由已知可得四边形AHBG是平行四边形,由(1)可知ABD=BAC,得到GAB为等腰三角形,AHBG的两邻边相等,从而得到平行四边形AHBG是菱形试题解析:(1)解:ABCBAD证明:AD=BC,ABC=BAD=90,AB=BA,ABCBAD(SAS)(2)证明:AHGB,BHGA,四边形AHBG是平行四边形ABCBAD,ABD=BACGA=GB平行四边形AHBG是菱形(3)需要添加的条件是AB=BC点睛:本题考查全等三角形,四边形等几何知识,考查几何论证和思维能力,第(3)小题是开放题,答案不唯一21、-17.1【解析】按
19、照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的【详解】解:原式8+(3)189(2),8149(2),62+4.1,17.1【点睛】此题要注意正确掌握运算顺序以及符号的处理22、(1)32;(2)x4或0x4;(3)点P的坐标是P(7+,14+2);或P(7+,14+2)【解析】分析:(1)先将x=4代入正比例函数y=2x,可得出y=8,求得点A(4,8),再根据点A与B关于原点对称,得出B点坐标,即可得出k的值;(2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值(3)由于双曲线是关于
20、原点的中心对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么POA的面积就应该是四边形面积的四分之一即1可根据双曲线的解析式设出P点的坐标,然后表示出POA的面积,由于POA的面积为1,由此可得出关于P点横坐标的方程,即可求出P点的坐标详解:(1)点A在正比例函数y=2x上,把x=4代入正比例函数y=2x,解得y=8,点A(4,8),把点A(4,8)代入反比例函数y=,得k=32,(2)点A与B关于原点对称,B点坐标为(4,8),由交点坐标,根据图象直接写出正比例函数值小于反比例函数值时x的取值范围,x8或0x8;(3)反比例函数图象是关于原点O的中心对称图形,OP=OQ,OA
21、=OB,四边形APBQ是平行四边形,SPOA=S平行四边形APBQ=224=1,设点P的横坐标为m(m0且m4),得P(m,),过点P、A分别做x轴的垂线,垂足为E、F,点P、A在双曲线上,SPOE=SAOF=16,若0m4,如图,SPOE+S梯形PEFA=SPOA+SAOF,S梯形PEFA=SPOA=1(8+)(4m)=1m1=7+3,m2=73(舍去),P(7+3,16+);若m4,如图,SAOF+S梯形AFEP=SAOP+SPOE,S梯形PEFA=SPOA=1(8+)(m4)=1,解得m1=7+3,m2=73(舍去),P(7+3,16+)点P的坐标是P(7+3,16+);或P(7+3,1
22、6+)点睛:本题考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义利用数形结合的思想,求得三角形的面积23、(1)AP=2t,AQ=163t;(2)运动时间为秒或1秒【解析】(1)根据路程=速度时间,即可表示出AP,AQ的长度.(2)此题应分两种情况讨论(1)当APQABC时;(2)当APQACB时利用相似三角形的性质求解即可【详解】(1)AP=2t,AQ=163t(2)PAQ=BAC,当时,APQABC,即,解得 当时,APQACB,即,解得t=1运动时间为秒或1秒【点睛】考查相似三角形的判定与性质,掌握相
23、似三角形的判定定理与性质定理是解题的关键.注意不要漏解.24、8,15,18,6,7;【解析】分析:结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与n棱柱的关系,可知n棱柱一定有(n+1)个面,1n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系详解:填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a681011棱数b9111518面数c5678根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+1个面,共有1n个顶点,共有3n条棱;故a,b,c之间的关系:a+c-b=1点睛:此题通过研究几个棱柱中顶点数、棱数、面数的关系探索出n棱柱中顶点数、棱数、面数之间的关系(即欧拉公式),掌握常见棱柱的特征,可以总结一般规律:n棱柱有(n+1)个面,1n个顶点和3n条棱是解题关键