《2022-2023学年湖南省衡阳市重点名校中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年湖南省衡阳市重点名校中考联考数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1一个多边形的每个内角都等于120,则这个多边形的边数为( )A4B5C6D72下列运算正确的是( )Aa2a3a6 Ba3+ a3a6 C|a2|a2 D(a2)3a63若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1
2、,则m的值为A1B3C0D1或34已知一个正n边形的每个内角为120,则这个多边形的对角线有()A5条B6条C8条D9条5如图,是一个工件的三视图,则此工件的全面积是()A60cm2B90cm2C96cm2D120cm26小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:ab,xy,x+y,a+b,x2y2,a2b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2y2)a2(x2y2)b2因式分解,结果呈现的密码信息可能是( )A我爱美B宜晶游C爱我宜昌D美我宜昌7如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式()A(a+b)(ab)a2
3、b2B(ab)2a22ab+b2C(a+b)2a2+2ab+b2D(a+b)2(ab)2+4ab8如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()Ay=2n+1By=2n+nCy=2n+1+nDy=2n+n+19如图,等腰直角三角形位于第一象限,直角顶点在直线上,其中点的横坐标为,且两条直角边,分别平行于轴、轴,若反比例函数的图象与有交点,则的取值范围是( )ABCD10下列运算正确的是()Aa2a3=a6 Ba3+a2=a5 C(a2)4=a8 Da3a2=a1123的相反数是()A8B8C6D612在平面直角坐标系xOy中,对于任意三点A
4、,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah例如:三点坐标分别为A(1,2),B(3,1),C(2,2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=1若D(1,2)、E(2,1)、F(0,t)三点的“矩面积”为18,则t的值为()A3或7 B4或6 C4或7 D3或6二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_14如图,在RtABC中,
5、ACB=90,点D、E、F分别是AB、AC、BC的中点,若CD=5,则EF的长为_15如图,在ABC中,ACB=90,B=60,AB=12,若以点A为圆心, AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为_(保留根号和)16已知点P(a,b)在反比例函数y=的图象上,则ab=_17如图,直线y1mx经过P(2,1)和Q(4,2)两点,且与直线y2kxb交于点P,则不等式kxbmx2的解集为_18在平面直角坐标系中,P的圆心是(2,a)(a2),半径为2,函数y=x的图象被P截得的弦AB的长为,则a的值是_三、解答题:(本大题共9个小题,共78分
6、,解答应写出文字说明、证明过程或演算步骤19(6分)已如:O与O上的一点A(1)求作:O的内接正六边形ABCDEF;( 要求:尺规作图,不写作法但保留作图痕迹)(2)连接CE,BF,判断四边形BCEF是否为矩形,并说明理由20(6分)解方程(2x+1)2=3(2x+1)21(6分)如图1,已知抛物线y=ax2+bx(a0)经过A(6,0)、B(8,8)两点(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且NBO=ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足PODNOB的点P
7、坐标(点P、O、D分别与点N、O、B对应) 22(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E(1)求证:DCEBFE;(2)若AB=4,tanADB=,求折叠后重叠部分的面积23(8分)如图,在等边ABC中,点D是 AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60后得到CE,连接AE求证:AEBC24(10分)如图,已知抛物线经过,两点,顶点为.(1)求抛物线的解析式;(2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的
8、抛物线上,且满足的面积是面积的2倍,求点的坐标.25(10分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:上表中众数m的值为 ;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励如果想让一半左右的工人能获奖,应根据
9、 来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手若该部门有300名工人,试估计该部门生产能手的人数26(12分)二次函数y=ax2+bx+c(a,b,c为常数,且a1)中的x与y的部分对应值如表x1113y1353下列结论:ac1;当x1时,y的值随x值的增大而减小3是方程ax2+(b1)x+c=1的一个根;当1x3时,ax2+(b1)x+c1其中正确的结论是 27(12分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进
10、行整理,得到下列不完整的统计图表组别分数段频次频率A60x70170.17B70x8030aC80x90b0.45D90x10080.08请根据所给信息,解答以下问题:(1)表中a=_,b=_;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】试题解析:多边形的每一个内角都等于120,多边形
11、的每一个外角都等于180-120=10,边数n=31010=1故选C考点:多边形内角与外角2、C【解析】根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解【详解】a2a3a5,故A项错误;a3+ a32a3,故B项错误;a3+ a3- a6,故D项错误,选C.【点睛】本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则.3、B【解析】直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值【详解】x=1是方程(m1)x2+x+m25m+3=0的一个根,(m1)+1+m25m+3=0,m
12、24m+3=0,m=1或m=3,但当m=1时方程的二次项系数为0,m=3.故答案选B.【点睛】本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.4、D【解析】多边形的每一个内角都等于120,则每个外角是60,而任何多边形的外角是360,则求得多边形的边数;再根据多边形一个顶点出发的对角线n3,即可求得对角线的条数【详解】解:多边形的每一个内角都等于120,每个外角是60度,则多边形的边数为360606,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有633条这个多边形的对角线有(63)9条,故选:D【点睛】本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边
13、形边数的方法是解本题的关键5、C【解析】先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.【详解】圆锥的底面圆的直径为12cm,高为8cm,所以圆锥的母线长=10,所以此工件的全面积=62+2610=96(cm2).故答案选C.【点睛】本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.6、C【解析】试题分析:(x2y2)a2(x2y2)b2=(x2y2)(a2b2)=(xy)(x+y)(ab)
14、(a+b),因为xy,x+y,a+b,ab四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C考点:因式分解.7、B【解析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答【详解】图1中阴影部分的面积为:(ab)2;图2中阴影部分的面积为:a22ab+b2;(ab)2a22ab+b2,故选B【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键8、B【解析】观察可知:左边三角形的数字规律为:1,2,n,右边三角形的数字规律为:2,下边三角形的数字规律为:1+2,最后一个三角形中y与n之间的关系式是y=2n+n.故选B【点睛
15、】考点:规律型:数字的变化类9、D【解析】设直线y=x与BC交于E点,分别过A、E两点作x轴的垂线,垂足为D、F,则A(1,1),而AB=AC=2,则B(3,1),ABC为等腰直角三角形,E为BC的中点,由中点坐标公式求E点坐标,当双曲线与ABC有唯一交点时,这个交点分别为A、E,由此可求出k的取值范围.解:,又过点,交于点,故选D.10、C【解析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘进行计算即可【详解】A、a2a3=a5,故原题计算错误;B、a3和a2不是同类项
16、,不能合并,故原题计算错误;C、(a2)4=a8,故原题计算正确;D、a3和a2不是同类项,不能合并,故原题计算错误;故选:C【点睛】此题主要考查了幂的乘方、同底数幂的乘法,以及合并同类项,关键是掌握计算法则11、B【解析】=8,8的相反数是8,的相反数是8,故选B12、C【解析】由题可知“水平底”a的长度为3,则由“矩面积”为18可知“铅垂高”h=6,再分 2或t1两种情况进行求解即可.【详解】解:由题可知a=3,则h=183=6,则可知t2或t1.当t2时,t-1=6,解得t=7;当t1时,2-t=6,解得t=-4.综上,t=-4或7.故选择C.【点睛】本题考查了平面直角坐标系的内容,理解
17、题意是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、 【解析】设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,A=D=90由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x在RtABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在RtDEF根据勾股定理列出关于x的方程即可解决问题【详解】设CE=x四边形ABCD是矩形,AD=BC=5,CD=AB=3,A=D=90将BCE沿BE折叠,使点C恰好落在AD边上的点F处,BF=BC=5,EF=CE=x,DE=CD-CE=3-x在RtABF中,由勾股定理得:AF2=52-32=16,AF
18、=4,DF=5-4=1在RtDEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=,故答案为14、5【解析】已知CD是RtABC斜边AB的中线,那么AB=2CD;EF是ABC的中位线,则EF应等于AB的一半【详解】ABC是直角三角形,CD是斜边的中线,CD= AB,又EF是ABC的中位线,AB=2CD=25=10,EF=10=5.故答案为5.【点睛】本题主要考查三角形中位线定理, 直角三角形斜边上的中线,熟悉掌握是关键.15、1518.【解析】根据扇形的面积公式:S=分别计算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面积,最后由S阴影部分=S扇形ACE
19、+S扇形BCD-SABC即可得到答案【详解】S阴影部分=S扇形ACE+S扇形BCD-SABC,S扇形ACE=12,S扇形BCD=3,SABC=66=18,S阴影部分=12+318=1518.故答案为1518.【点睛】本题考查了扇形面积的计算,解题的关键是熟练的掌握扇形的面积公式.16、2【解析】【分析】接把点P(a,b)代入反比例函数y=即可得出结论【详解】点P(a,b)在反比例函数y=的图象上,b=,ab=2,故答案为:2.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键17、4x1【解析】将P(1,1)代入解析式y1=m
20、x,先求出m的值为,将Q点纵坐标y=1代入解析式y=x,求出y1=mx的横坐标x=-4,即可由图直接求出不等式kx+bmx-1的解集为y1y1-1时,x的取值范围为-4x1故答案为-4x1点睛:本题考查了一次函数与一元一次不等式,求出函数图象的交点坐标及函数与x轴的交点坐标是解题的关键18、2+【解析】试题分析:过P点作PEAB于E,过P点作PCx轴于C,交AB于D,连接PAPEAB,AB=2,半径为2, AE=AB=,PA=2, 根据勾股定理得:PE=1,点A在直线y=x上,AOC=45,DCO=90, ODC=45,OCD是等腰直角三角形, OC=CD=2, PDE=ODC=45,DPE=
21、PDE=45, DE=PE=1, PD=P的圆心是(2,a), a=PD+DC=2+【点睛】本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45,这一个条件的应用也是很重要的三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)答案见解析;(2)证明见解析.【解析】(1)如图,在O上依次截取六段弦,使它们都等于OA,从而得到正六边形ABCDEF;(2)连接BE,如图,利用正六边形的
22、性质得AB=BC=CD=DE=EF=FA,则判断BE为直径,所以BFE=BCE=90,同理可得FBC=CEF=90,然后判断四边形BCEF为矩形【详解】解:(1)如图,正六边形ABCDEF为所作;(2)四边形BCEF为矩形理由如下:连接BE,如图,六边形ABCDEF为正六边形,AB=BC=CD=DE=EF=FA,BE为直径,BFE=BCE=90,同理可得FBC=CEF=90,四边形BCEF为矩形【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本
23、作图,逐步操作也考查了矩形的判定与正六边形的性质20、x1=-,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+13)=0,推出方程2x+1=0,2x+13=0,求出方程的解即可试题解析:解:整理得:(2x+1)23(2x+1)=0,分解因式得:(2x+1)(2x+13)=0,即2x+1=0,2x+13=0,解得:x1=,x2=1点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大21、(1)抛物线的解析式是y=x23x;(2)D点的坐标为(4,4);(3)点P的坐标是()或()【解析】试题分析:(1)利用待
24、定系数法求二次函数解析式进而得出答案即可;(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;(3)首先求出直线AB的解析式,进而由P1ODNOB,得出P1ODN1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标试题解析:(1)抛物线y=ax2+bx(a0)经过A(6,0)、B(8,8)将A与B两点坐标代入得:,解得:,抛物线的解析式是y=x23x (2)设直线OB的解析式为y=k1x,由点B(8,8),得:8=8k1,解得:k1=1 直线OB的解析式为y=x, 直线OB向下平移m个单位长度后的解析式为:y=xm,xm=x23x, 抛物线与直线只
25、有一个公共点, =162m=0,解得:m=8, 此时x1=x2=4,y=x23x=4, D点的坐标为(4,4)(3)直线OB的解析式为y=x,且A(6,0),点A关于直线OB的对称点A的坐标是(0,6),根据轴对称性质和三线合一性质得出ABO=ABO,设直线AB的解析式为y=k2x+6,过点(8,8),8k2+6=8,解得:k2= , 直线AB的解析式是y=,NBO=ABO,ABO=ABO, BA和BN重合,即点N在直线AB上,设点N(n,),又点N在抛物线y=x23x上,=n23n, 解得:n1=,n2=8(不合题意,舍去)N点的坐标为(,)如图1,将NOB沿x轴翻折,得到N1OB1, 则N
26、1(,-),B1(8,8),O、D、B1都在直线y=x上P1ODNOB,NOBN1OB1, P1ODN1OB1, 点P1的坐标为()将OP1D沿直线y=x翻折,可得另一个满足条件的点P2(),综上所述,点P的坐标是()或()【点睛】运用了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键22、(1)见解析;(2)1【解析】(1)由矩形的性质可知A=C=90,由翻折的性质可知A=F=90,从而得到F=C,依据AAS证明DCEBFE即可;(2)由DCEBFE可知:EB=DE,依据AB=4,tanADB=,即可得到DC,
27、BC的长,然后再RtEDC中利用勾股定理列方程,可求得BE的长,从而可求得重叠部分的面积【详解】解:(1)四边形ABCD是矩形,A=C=90,AB=CD,由折叠可得,F=A,BF=AB,BF=DC,F=C=90,又BEF=DEC,DCEBFE;(2)AB=4,tanADB=,AD=8=BC,CD=4,DCEBFE,BE=DE,设BE=DE=x,则CE=8x,在RtCDE中,CE2+CD2=DE2,(8x)2+42=x2,解得x=5,BE=5,SBDE=BECD=54=1【点睛】本题考查了折叠的性质、全等三角形的判定和性质以及勾股定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形
28、状和大小不变,位置变化,对应边和对应角相等23、见解析【解析】试题分析:根据等边三角形的性质得出AC=BC,B=ACB=60,根据旋转的性质得出CD=CE,DCE=60,求出BCD=ACE,根据SAS推出BCDACE,根据全等得出EAC=B=60,求出EAC=ACB,根据平行线的判定得出即可.试题解析:ABC是等边三角形,AC=BC,B=ACB=60,线段CD绕点C顺时针旋转60得到CE,CD=CE,DCE=60,DCE=ACB,即BCD+DCA=DCA+ACE,BCD=ACE,在BCD与ACE中,BCDACE,EAC=B=60,EAC=ACB,AEBC.24、(1)抛物线的解析式为.(2)平
29、移后的抛物线解析式为:.(3)点的坐标为或.【解析】分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2),OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)将原抛物线沿y轴向下平移1个单位后过点C平移后的抛物线解析式为:y=x2-3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想详解: (1)已知抛物线经过,,解得,所求抛物线的解析式为.(2),,可得旋转后点的坐标为.当时,由得,可知抛物线过点.将原抛物线沿轴向
30、下平移1个单位长度后过点.平移后的抛物线解析式为:.(3)点在上,可设点坐标为,将配方得,其对称轴为.由题得(0,1)当时,如图,此时,点的坐标为.当时,如图,同理可得,此时,点的坐标为.综上,点的坐标为或.点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用25、 (1)18;(2)中位数;(3)100名.【解析】【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数【详解】(1)由图可得,众数m
31、的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300=100(名),答:该部门生产能手有100名工人【点睛】本题考查了条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答26、【解析】试题分析:x=1时y=1,x=1时,y=3,x=1时,y=5,解得,y=x2+3x+3,ac=13=31,故正确;对称轴为直线,所以,当x时,y的值随x值的增大而减小,故错误;方程为x2+2x+3=1,整理得,x22x3=1,解得x1=1,x2=3,所以,3是方程ax2+(b
32、1)x+c=1的一个根,正确,故正确;1x3时,ax2+(b1)x+c1正确,故正确;综上所述,结论正确的是故答案为【考点】二次函数的性质27、(1)0.3 ,45;(2)108;(3)【解析】(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;(2)B组的频率乘以360即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为170.17=100(人),则a=0.3,b=1000.45=45(人)故答案为0.3,45;(2)3600.3=108答:扇形统计图中B组对应扇形的圆心角为108(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,甲、乙两名同学都被选中的概率为=【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小