《2022-2023学年浙江省绍兴市嵊州市中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年浙江省绍兴市嵊州市中考适应性考试数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A8B9C10D112 “单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.右图描述了某次单词复习中四位同学的单词记忆效率与复习的单词个数的情况,
2、则这四位同学在这次单词复习中正确默写出的单词个数最多的是( )ABCD3下列说法正确的是( )A负数没有倒数 B1的倒数是1C任何有理数都有倒数 D正数的倒数比自身小4某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x3时,y18,那么当半径为6cm时,成本为()A18元B36元C54元D72元5一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()ABCD6如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则ABC的正切值是( )AB2CD7下列图形中,既是中心对称,又是
3、轴对称的是()ABCD8已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为( )A1.239103g/cm3B1.239102g/cm3C0.1239102g/cm3D12.39104g/cm39如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DEAC,EFAB,FDBC,则DEF的面积与ABC的面积之比等于( )A13B23C2D310在3,0,4,这四个数中,最大的数是( )A3B0C4D二、填空题(本大题共6个小题,每小题3分,共18分)11点A(a,b)与点B(3,4)关于y轴对称,则a+b的值为_12掷一枚材质均匀的骰子,掷得的点数为合数的
4、概率是_ .13如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90得到线段CE,线段BD绕点B顺时针旋转90得到线段BF,连接BF,则图中阴影部分的面积是_14如图,中,平分,与相交于点,则的长等于_.15如图,是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图折成正方体后,相对面上的两个数互为相反数,则填在B内的数为_16某小区购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,求银杏树和玉兰树的单价.设银杏树的单价为x元,可列方程为_.
5、三、解答题(共8题,共72分)17(8分)如图,O是ABC的外接圆,AB为直径,ODBC交O于点D,交AC于点E,连接AD、BD、CD(1)求证:ADCD;(2)若AB10,OE3,求tanDBC的值18(8分)如图,在中,ABAC,点D是BC的中点,DEAB于点E,DFAC于点F. (1)EDB_(用含的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.根据条件补全图形;写出DM与DN的数量关系并证明;用等式表示线段BM、CN与BC之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.19(8分)如图1,在RtABC中,C=90,AC=BC=2,点D
6、、E分别在边AC、AB上,AD=DE=AB,连接DE将ADE绕点A逆时针方向旋转,记旋转角为(1)问题发现当=0时,= ;当=180时,= (2)拓展探究试判断:当0360时,的大小有无变化?请仅就图2的情形给出证明;(3)问题解决在旋转过程中,BE的最大值为 ;当ADE旋转至B、D、E三点共线时,线段CD的长为 20(8分)如图,AB为O的直径,C为O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E(1)求证:AC平分DAB;(2)若BE=3,CE=3,求图中阴影部分的面积21(8分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测
7、试成绩按标准定为A、B、C、D四个等级,并把测试成绩绘成如图所示的两个统计图表七年级英语口语测试成绩统计表成绩分等级人数A12BmCnD9请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中C级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到B级以上包括B级的学生人数22(10分)如图,在ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CFAB交AE的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.23(12分)如图, 二次函数的图象与 x 轴交于和两点,与 y
8、轴交于点 C,一次函数的图象过点 A、C(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围24计算:142(3)2+()如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现EFM=2BFM,求EFC的度数参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】分析:根据多边形的内角和公式及外角的特征计算详解:多边形的外角和是360,根据题意得:110(n-2)=3360解得n=1故选A点睛:本题主要考查了多边形内角和公式及外角的特征求多边形的边数,可以转化为方程的问题来解决2、C【解析】分析:在四位同学
9、中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.详解:在四位同学中,M同学单词记忆效率最高,但是复习的单词最少,T同学复习的单词最多,但是他的单词记忆效率最低,N,S两位同学的单词记忆效率基本相同,但是S同学复习的单词最多,这四位同学在这次单词复习中正确默写出的单词个数最多的应该是S.故选C.点睛:考查函数的图象,正确理解题目的意思是解题的关键.3、B【解析】根据倒数的定义解答即可.【详解】A、只有0没有倒数,该项错误;B
10、、1的倒数是1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.4、D【解析】设y与x之间的函数关系式为ykx2,由待定系数法就可以求出解析式,再求出x6时y的值即可得【详解】解:根据题意设ykx2,当x3时,y18,18k9,则k,ykx2x22x2,当x6时,y23672,故选:D【点睛】本题考查了二次函数的应用,解答时求出函数的解析式是关键5、C【解析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画
11、树状图得:共有12种等可能的结果,两次都摸到白球的有2种情况,两次都摸到白球的概率是:故答案为C【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键6、A【解析】分析:连接AC,根据勾股定理求出AC、BC、AB的长,根据勾股定理的逆定理得到ABC是直角三角形,根据正切的定义计算即可详解:连接AC,由网格特点和勾股定理可知,AC=,AC2+AB2=10,BC2=10,AC2+AB2=BC2,ABC是直角三角形,tanABC=.点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足
12、a2+b2=c2,那么这个三角形就是直角三角形是解题的关键7、C【解析】根据中心对称图形,轴对称图形的定义进行判断【详解】A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误故选C【点睛】本题考查了中心对称图形,轴对称图形的判断关键是根据图形自身的对称性进行判断8、A【解析】试题分析:0.001219=1.219101故选A考点:科学记数法表示较小的数9、A【解析】DEAC,EFAB,FDBC,C+EDC=90,FDE+EDC=90,C=FDE
13、,同理可得:B=DFE,A=DEF,DEFCAB,DEF与ABC的面积之比= ,又ABC为正三角形,B=C=A=60EFD是等边三角形,EF=DE=DF,又DEAC,EFAB,FDBC,AEFCDEBFD,BF=AE=CD,AF=BD=EC,在RtDEC中,DE=DCsinC=DC,EC=cosCDC=DC,又DC+BD=BC=AC=DC,DEF与ABC的面积之比等于:故选A点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对
14、应边之比,进而得到面积比10、C【解析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小因此,在3,0,1,这四个数中,301,最大的数是1故选C二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答即可【详解】解:点与点 关于y轴对称, 故答案为1【点睛】考查关于轴对称的点的坐标特征,纵坐标不变,横坐标互为相反数12、【解析】分析:根据概率的求法,找准两点: 全部情况的总数; 符合条件的情况数目;二者的比值就是其发生的概率详解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、
15、5、6中的任意一个数,共有六种可能,其中4、6是合数,所以概率为= 故答案为点睛:本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比13、6【解析】过F作FMBE于M,则FME=FMB=90,四边形ABCD是正方形,AB=2,DCB=90,DC=BC=AB=2,DCB=45,由勾股定理得:BD=2,将线段CD绕点C顺时针旋转90得到线段CE,线段BD绕点B顺时针旋转90得到线段BF,DCE=90,BF=BD=2,FBE=90-45=45,BM=FM=2,ME=2,阴影部分的面积=22+42+-=6-.故答案为:6-点睛:本题考查了旋转的性质,解直角三角形,正方形的性质,扇形
16、的面积计算等知识点,能求出各个部分的面积是解此题的关键14、3【解析】如图,延长CE、DE,分别交AB于G、H,由BAD=ADE=60可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CGAB,可求出AG的长,进而可得GH的长,根据含30角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.【详解】如图,延长CE、DE,分别交AB于G、H,BAD=ADE=60,ADH是等边三角形,DH=AD=AH=5,DHA=60,AC=BC,CE平分ACB,ACB=90,AB=8,AG=AB=4,CGAB,GH=AH=AG=5-4=1,DHA=60,GEH=30,EH=2GH=2DE=
17、DH-EH=5=2=3.故答案为:3【点睛】本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30角的直角三角形的性质,熟记30角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.15、1【解析】试题解析:正方体的展开图中对面不存在公共部分,B与-1所在的面为对面B内的数为1故答案为116、【解析】根据银杏树的单价为x元,则玉兰树的单价为1.5x元,根据“某小区购买了银杏树和玉兰树共1棵”列出方程即可【详解】设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意,得:1故答案为:1【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键
18、三、解答题(共8题,共72分)17、(1)见解析;(2)tanDBC【解析】(1)先利用圆周角定理得到ACB90,再利用平行线的性质得AEO90,则根据垂径定理得到,从而有ADCD;(2)先在RtOAE中利用勾股定理计算出AE,则根据正切的定义得到tanDAE的值,然后根据圆周角定理得到DACDBC,从而可确定tanDBC的值【详解】(1)证明:AB为直径,ACB90,ODBC,AEOACB90,OEAC,ADCD;(2)解:AB10,OAOD5,DEODOE532,在RtOAE中,AE4,tanDAE,DACDBC,tanDBC【点睛】垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周
19、角定理是解题的关键.18、(1);(2)(2)见解析;DMDN,理由见解析;数量关系:【解析】(1)先利用等腰三角形的性质和三角形内角和得到B=C=90,然后利用互余可得到EDB=;(2)如图,利用EDF=1802画图;先利用等腰三角形的性质得到DA平分BAC,再根据角平分线性质得到DE=DF,根据四边形内角和得到EDF=1802,所以MDE=NDF,然后证明MDENDF得到DM=DN;先由MDENDF可得EM=FN,再证明BDECDF得BE=CF,利用等量代换得到BM+CN=2BE,然后根据正弦定义得到BE=BDsin,从而有BM+CN=BCsin【详解】(1)AB=AC,B=C(180A)
20、=90DEAB,DEB=90,EDB=90B=90(90)=故答案为:;(2)如图:DM=DN理由如下:AB=AC,BD=DC,DA平分BACDEAB于点E,DFAC于点F,DE=DF,MED=NFD=90A=2,EDF=1802MDN=1802,MDE=NDF在MDE和NDF中,MDENDF,DM=DN;数量关系:BM+CN=BCsin证明思路为:先由MDENDF可得EM=FN,再证明BDECDF得BE=CF,所以BM+CN=BE+EM+CFFN=2BE,接着在RtBDE可得BE=BDsin,从而有BM+CN=BCsin【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中
21、心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰三角形的性质19、(1);(2)无变化,证明见解析;(3)2+2 +1或1.【解析】(1)先判断出DECB,进而得出比例式,代值即可得出结论;先得出DEBC,即可得出,再用比例的性质即可得出结论;(2)先CAD=BAE,进而判断出ADCAEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD【详解】解:(1)当=0时,在RtABC中,AC=BC=2,A=B=45,AB=2,AD=DE=AB=,AED=A=45,ADE=90,DECB,故答案为,当=180时,如图1,DEBC,
22、即:,故答案为;(2)当0360时,的大小没有变化,理由:CAB=DAE,CAD=BAE,ADCAEB,;(3)当点E在BA的延长线时,BE最大,在RtADE中,AE=AD=2,BE最大=AB+AE=2+2;如图2,当点E在BD上时,ADE=90,ADB=90,在RtADB中,AB=2,AD=,根据勾股定理得,BD=,BE=BD+DE=+,由(2)知,CD=+1,如图3, 当点D在BE的延长线上时,在RtADB中,AD=,AB=2,根据勾股定理得,BD=,BE=BDDE=,由(2)知,CD=1故答案为 +1或1【点睛】此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角
23、形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DEBC,解(2)的关键是判断出ADCAEB,解(3)关键是作出图形求出BD,是一道中等难度的题目20、(1)证明见解析;(2) 【解析】(1)连接OC,如图,利用切线的性质得COCD,则ADCO,所以DAC=ACO,加上ACO=CAO,从而得到DAC=CAO;(2)设O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出COE=60,然后根据扇形的面积公式,利用S阴影=SCOES扇形COB进行计算即可【详解】解:(1)连接OC,如图,CD与O相切于点E,COCD,ADCD,ADC
24、O,DAC=ACO,OA=OC,ACO=CAO,DAC=CAO,即AC平分DAB;(2)设O半径为r,在RtOEC中,OE2+EC2=OC2,r2+27=(r+3)2,解得r=3,OC=3,OE=6,cosCOE=,COE=60,S阴影=SCOES扇形COB=33【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了圆周角定理和扇形的面积公式21、 (1)60人;(2)144;(3)288人.【解析】等级人数除以其所占百分比即可得;先求出A等级对应的百分比,再由百分比之和为1得出C等级的百分比,
25、继而乘以即可得;总人数乘以A、B等级百分比之和即可得【详解】解:本次被抽取参加英语口语测试的学生共有人;级所占百分比为,级对应的百分比为,则扇形统计图中C级的圆心角度数为;人,答:估计英语口语达到B级以上包括B级的学生人数为288人【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了样本估计总体22、 (1)证明见解析;(2)四边形BDCF是矩形,理由见解析.【解析】(1)证明:CFAB,DAECFE又DECE,AEDFEC,ADEFCE,ADCFADDB,DBCF(2)四边形BDCF是矩形证
26、明:由(1)知DBCF,又DBCF,四边形BDCF为平行四边形ACBC,ADDB,CDAB四边形BDCF是矩形23、(1);(2)【解析】(1)将和两点代入函数解析式即可;(2)结合二次函数图象即可【详解】解:(1)二次函数与轴交于和两点,解得二次函数的表达式为 (2)由函数图象可知,二次函数值大于一次函数值的自变量x的取值范围是【点睛】本题考查了待定系数法求二次函数解析式以及二次函数与不等式,解题的关键是熟悉二次函数的性质24、(1)10;(2)EFC=72【解析】(1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.【详解】(1)原式=118+9=10;(2)由折叠得:EFM=EFC,EFM=2BFM,设EFM=EFC=x,则有BFM=x,MFB+MFE+EFC=180,x+x+x=180,解得:x=72,则EFC=72【点睛】本题考查了实数的性质及平行线的性质,解题的关键是熟练掌握实数的运算法则及平行线的性质.