《2022-2023学年河北省石家庄市栾城区中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年河北省石家庄市栾城区中考数学适应性模拟试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在ABC中,ACB=90, ABC=60, BD平分ABC ,P点是BD的中点,若AD=6,
2、则CP的长为( )A3.5B3C4D4.521的相反数是()A1B1CD1323的相反数是()A8B8C6D64若一元二次方程x22x+m=0有两个不相同的实数根,则实数m的取值范围是()Am1Bm1Cm1Dm15如图,甲从A点出发向北偏东70方向走到点B,乙从点A出发向南偏西15方向走到点C,则BAC的度数是()A85B105C125D1606如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()ABCD7用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A4B6C16D88如图,O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为A6BCD39在,0,1
3、这四个数中,最小的数是ABC0D110如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为()A2.6m2B5.6m2C8.25m2D10.4m211若不等式组无解,那么m的取值范围是()Am2Bm2Cm2Dm212已知x1、x2是关于x的方程x2ax2=0的两根,下列结论一定正确的是()Ax1x2Bx1+x20Cx1x20Dx10,x20二、填空题:(本大题共6个小题
4、,每小题4分,共24分)13如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_米14如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D当ODAD3时,这两个二次函数的最大值之和等于_15如图EDB由ABC绕点B逆时针旋转而来,D点落在AC上,DE交AB于点F,若AB=AC,DB=BF,则AF与BF的比值为_16一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为 17如图,在ABC中,C9
5、0,BC16 cm,AC12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t_时,CPQ与CBA相似18在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分
6、频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)表中a的值为 ,中位数在第 组;频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率组别成绩x分频数(人数)第1组50x606第2组60x708第3组70x8014第4组80x90a第5组90x1001020(6分)如图,在建筑物M的顶端A处测得大楼N顶端B点的仰角=45,同时测得大楼底端A点的俯角为=30已知建筑物M的高CD=20米,求楼高AB为多
7、少米?(1.732,结果精确到0.1米)21(6分)先化简,再求值:,其中x=,y=22(8分)某商场甲、乙、丙三名业务员2018年前5个月的销售额(单位:万元)如下表:月份销售额人员第1月第2月第3月第4月第5月甲691088乙57899丙5910511(1)根据上表中的数据,将下表补充完整:统计值数值人员平均数(万元)众数(万元)中位数(万元)方差甲881.76乙7.682.24丙85(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.23(8分)为了了解某校学生对以下四个电视节目:A最强大脑,B中国诗词大会,C朗读者,D出彩中国人的喜爱情况,随机抽取了部分学生进行
8、调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:本次调查的学生人数为_;在扇形统计图中,A部分所占圆心角的度数为_;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱中国诗词大会的学生有多少名?24(10分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B求抛物线的解析式;判断ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若SOPA=2SOQA,试求出点P的坐标25(10分)如图所示:ABC是等腰三角形,ABC=
9、90(1)尺规作图:作线段AB的垂直平分线l,垂足为H(保留作图痕迹,不写作法);(2)垂直平分线l交AC于点D,求证:AB=2DH26(12分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM判断四边形AEMF是什么特殊四边形?并证明你的结论27(12分)在ABC中,已知AB=AC,BAC=90,E为边AC上一点,连接BE如图1,若ABE=15,O为BE中点,连接AO,且AO=1,求BC的长;如图2,D为AB上一点,且满足AE=AD,过点A作AFBE交BC于点F,过点F作FG
10、CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】解:ACB90,ABC60,A10,BD平分ABC,ABDABC10,AABD,BDAD6,在RtBCD中,P点是BD的中点,CPBD1故选B2、B【解析】根据相反数的的定义解答即可.【详解】根据a的相反数为-a即可得,1的相反数是1.故选B.【点睛】本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.3、B【解析】=8,8的相反数是8,的相反数是8,故选B4、D【解析】分析:根据方程的系数结合根的判别
11、式0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围详解:方程有两个不相同的实数根, 解得:m1故选D点睛:本题考查了根的判别式,牢记“当0时,方程有两个不相等的实数根”是解题的关键5、C【解析】首先求得AB与正东方向的夹角的度数,即可求解【详解】根据题意得:BAC(9070)+15+90125,故选:C【点睛】本题考查了方向角,正确理解方向角的定义是关键6、B【解析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形【详解】从上面看,是正方形右边有一条斜线,如图:故选B【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键7、A【解析】由
12、于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8,底面半径=82【详解】解:由题意知:底面周长=8,底面半径=82=1故选A【点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长8、D【解析】解:因为AB是O的直径,所以ACB=90,又O的直径AB垂直于弦CD,所以在RtAEC 中,A=30,又AC=3,所以CE=AB=,所以CD=2CE=3,故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.9、A【解析】【分析】根据正数
13、大于零,零大于负数,正数大于一切负数,即可得答案【详解】由正数大于零,零大于负数,得,最小的数是,故选A【点睛】本题考查了有理数比较大小,利用好“正数大于零,零大于负数,两个负数绝对值大的反而小”是解题关键10、D【解析】首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可【详解】经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近,小石子落在不规则区域的概率为0.65,正方形的边长为4m,面积为16 m2设不规则部分的面积为s m2则=0.65解得:s=10.4故答案为:D【点睛】利用频率估计概率11、A【解析】先求出每个不等式的解集,再根据不等式组解集的
14、求法和不等式组无解的条件,即可得到m的取值范围【详解】由得,xm,由得,x1,又因为不等式组无解,所以m1故选A【点睛】此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了12、A【解析】分析:A、根据方程的系数结合根的判别式,可得出0,由此即可得出x1x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1x2=2,结论C错误;D、由x1x2=2,可得出x10,x20,结论D错误综上即可得出结论详解:A=(a)241(2)=a2+80,x1x2,结
15、论A正确;B、x1、x2是关于x的方程x2ax2=0的两根,x1+x2=a,a的值不确定,B结论不一定正确;C、x1、x2是关于x的方程x2ax2=0的两根,x1x2=2,结论C错误;D、x1x2=2,x10,x20,结论D错误故选A点睛:本题考查了根的判别式以及根与系数的关系,牢记“当0时,方程有两个不相等的实数根”是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、6.4【解析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.14、【解析】此
16、题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题【详解】过B作BFOA于F,过D作DEOA于E,过C作CMOA于M,则BF+CM是这两个二次函数的最大值之和,BFDECM,求出AE=OE=2,DE= ,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出OBFODE,ACMADE,得出= ,代入求出BF和CM,相加即可求出答案过B作BFOA于F,过D作DEOA于E,过C作CMOA于M,BFOA,DEOA,CMOA,BFDECMOD=AD=3,DEOA,OE=EA= OA=2,由勾股定理得:DE= =5,设P(2x,0),根据
17、二次函数的对称性得出OF=PF=x,BFDECM,OBFODE,ACMADE,AM=PM= (OA-OP)= (4-2x)=2-x,即,解得:BF+CM= 故答案为【点睛】考核知识点:二次函数综合题熟记性质,数形结合是关键.15、【解析】先利用旋转的性质得到BCBD,CEDB,AE,CBDABE,再利用等腰三角形的性质和三角形内角和定理证明ABDA,则BDAD,然后证明BDCABC,则利用相似比得到BC:ABCD:BC,即BF:(AFBF)AF:BF,最后利用解方程求出AF与BF的比值.【详解】如图EDB由ABC绕点B逆时针旋转而来,D点落在AC上,BCBD,CEDB,AE,CBDABE,AB
18、EADF,CBDADF,DBBF,BFBDBC,而CEDB,CBDABD,ABCC2ABD,BDCAABD,ABDA,BDAD,CDAF,ABAC,ABCCBDC,BDCABC,BC:ABCD:BC,即BF:(AFBF)AF:BF,整理得AF2BFAFBF20,AFBF,即AF与BF的比值为.故答案是.【点睛】本题主要考查了旋转的性质、等腰三角形的性质、相似三角形的性质,熟练掌握这些知识点并灵活运用是解题的关键.16、-1.【解析】因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解【详解】一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,由根与系数关系:-1x1=1,解
19、得x1=-1故答案为-1.17、4.8或【解析】根据题意可分两种情况,当CP和CB是对应边时,CPQCBA与CP和CA是对应边时,CPQCAB,根据相似三角形的性质分别求出时间t即可.【详解】CP和CB是对应边时,CPQCBA,所以,即,解得t4.8;CP和CA是对应边时,CPQCAB,所以,即,解得t.综上所述,当t4.8或时,CPQ与CBA相似【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.18、 【解析】在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案【详解】在:等腰三角形、圆、矩形、菱形和直角梯
20、形中属于中心对称图形的有:圆、矩形和菱形3种,从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:.故答案为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)12,3. 详见解析.(2).【解析】分析:(1)根据题意和表中的数据可以求得a的值;由表格中的数据可以将频数分布表补充完整;(2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;(3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率详解:(1)a=50(6+8+14+10)=12,中位数为第25、26个数的平均数,而第25、26个数均落在第3组内
21、,所以中位数落在第3组,故答案为12,3;如图,(2)100%=44%,答:本次测试的优秀率是44%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(ABCD)、(ACBD)、(ADBC).所以小明和小强分在一起的概率为:点睛:本题考查列举法求概率、频数分布表、频数分布直方图、中位数,解题的关键是明确题意,找出所求问题需要的条件,可以将所有的可能性都写出来,求出相应的概率20、楼高AB为54.6米【解析】过点C作CEAB于E,解直角三角形求出CE和CE的长,进而求出AB的长【详解】解:如图,过点C作CEAB于E,则AE=CD=20,CE=20,BE=CEtan=20
22、tan45=201=20,AB=AE+EB=20+20202.73254.6(米),答:楼高AB为54.6米【点睛】此题主要考查了仰角与俯角的应用,根据已知构造直角三角形利用锐角三角函数关系得出是解题关键21、x+y,【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题试题解析:原式= =x+y,当x=,y=2时,原式=2+2=22、(1)8.2;9;9;6.4;(2)赞同甲的说法.理由见解析.【解析】(1)利用平均数、众数、中位数的定义和方差的计算公式求解;(2)利用甲的平均数大得到总营业额高,方差小,营业额稳定进行判断.【详解】(1)甲的平均数;乙的
23、众数为9;丙的中位数为9,丙的方差;故答案为8.2;9;9;6.4;(2)赞同甲的说法.理由是:甲的平均数高,总营业额比乙、丙都高,每月的营业额比较稳定.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小.记住方差的计算公式.也考查了平均数、众数和中位数.23、(1)120;(2) ;(3)答案见解析;(4)1650.【解析】(1)依据节目B的数据,即可得到调查的学生人数;(2)依据A部分的百分比,即可得到A部分所占圆心角的度数;(3)求得C部分的人数,即可将条形统计图补充完整;(4)依据喜爱中国诗词大会的学生所占的百分比,即可得到该校
24、最喜爱中国诗词大会的学生数量【详解】,故答案为120;,故答案为;:,如图所示:,答:该校最喜爱中国诗词大会的学生有1650名【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答24、(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3)【解析】(1)根据题意得出方程组,求出b、c的值,即可求出答案;(2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;(3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE
25、的长,即可得出答案【详解】解:(1)由题意得:,解得:,抛物线的解析式为y=-x2+2x+2;(2)由y=-x2+2x+2得:当x=0时,y=2,B(0,2),由y=-(x-1)2+3得:C(1,3),A(3,-1),AB=3,BC=,AC=2,AB2+BC2=AC2,ABC=90,ABC是直角三角形;(3)如图,当点Q在线段AP上时,过点P作PEx轴于点E,ADx轴于点DSOPA=2SOQA,PA=2AQ,PQ=AQPEAD,PQEAQD,=1,PE=AD=1由-x2+2x+2=1得:x=1,P(1+,1)或(1-,1),如图,当点Q在PA延长线上时,过点P作PEx轴于点E,ADx轴于点DS
26、OPA=2SOQA,PA=2AQ,PQ=3AQPEAD,PQEAQD,=3,PE=3AD=3由-x2+2x+2=-3得:x=1,P(1+,-3),或(1-,-3),综上可知:点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3)【点睛】本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键25、 (1)见解析;(2)证明见解析.【解析】(1)利用线段垂直平分线的作法,分别以A,B为端点,大于为半径作弧,得出直线l即可;(2)利用利用平行线的性质以及平行线分线段成比例定理得出点D是AC的中点,进而得出答案
27、【详解】解:(1)如图所示:直线l即为所求;(2)证明:点H是AB的中点,且DHAB,DHBC,点D是AC的中点, AB=2DH.【点睛】考查作图基本作图,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握垂直平分线的性质是解题的性质.26、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.【解析】(1)求简单的线段相等,可证线段所在的三角形全等,即证ABEADF;(2)由于四边形ABCD是正方形,易得ECO=FCO=45,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相
28、等的平行四边形是菱形,即可判定四边形AEMF是菱形【详解】(1)证明:四边形ABCD是正方形,AB=AD,B=D=90,在RtABE和RtADF中,RtADFRtABE(HL)BE=DF;(2)四边形AEMF是菱形,理由为:证明:四边形ABCD是正方形,BCA=DCA=45(正方形的对角线平分一组对角),BC=DC(正方形四条边相等),BE=DF(已证),BC-BE=DC-DF(等式的性质),即CE=CF,在COE和COF中,COECOF(SAS),OE=OF,又OM=OA,四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),AE=AF,平行四边形AEMF是菱形27、(1) (2
29、)证明见解析【解析】(1)如图1中,在AB上取一点M,使得BM=ME,连接ME,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题(2)如图2中,作CQAC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题【详解】解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME在 RtABE 中,OB=OE,BE=2OA=2,MB=ME,MBE=MEB=15,AME=MBE+MEB=30,设 AE=x,则 ME=BM=2x,AM=x,AB2+AE2=BE2,x= (负根已经舍弃),AB=AC=(
30、2+ ) ,BC= AB= +1作 CQAC,交 AF 的延长线于 Q, AD=AE ,AB=AC ,BAE=CAD,ABEACD(SAS),ABE=ACD,BAC=90,FGCD,AEB=CMF,GEM=GME,EG=MG,ABE=CAQ,AB=AC,BAE=ACQ=90,ABECAQ(ASA),BE=AQ,AEB=Q,CMF=Q,MCF=QCF=45,CF=CF,CMFCQF(AAS),FM=FQ,BE=AQ=AF+FQ=AF=FM,EG=MG,BG=BE+EG=AF+FM+MG=AF+FG【点睛】本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题