《广东省高州市九校联考2022-2023学年中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《广东省高州市九校联考2022-2023学年中考数学仿真试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1一、单选题如图,ABC中,AD是BC边上的高,AE、BF分别是BAC、ABC的平分线,BAC=50,ABC=60,则EAD+ACD=()A75B80C85D902小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一
2、批葡萄的价格降低了 25 ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克若设早上葡萄的价格是 x 元/千克,则可列方程( )ABCD3若等式(-5)5=1成立,则内的运算符号为( )A+BCD4初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A(6,3)B(6,4)C(7,4)D(8,4)5已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A3B5C1或3D1或56从1、2、3、4、5、6
3、这六个数中随机取出一个数,取出的数是3的倍数的概率是()ABCD7到三角形三个顶点的距离相等的点是三角形( )的交点A三个内角平分线B三边垂直平分线C三条中线D三条高8如图1,点F从菱形ABCD的顶点A出发,沿ADB以1cm/s的速度匀速运动到点B,图2是点F运动时,FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()AB2CD29如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )Ax-2或x2Bx-2或0x2C-2x0或0x2D-2x0或x210罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大
4、如图是对某球员罚球训练时命中情况的统计:下面三个推断:当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1其中合理的是( )ABCD11如图,AB与O相切于点A,BO与O相交于点C,点D是优弧AC上一点,CDA27,则B的大小是( )A27B34C36D5412方程x(x2)x20的两个根为( )A,B,C ,D, 二、填空题:(本大题共6个小题,每小题4分,共2
5、4分)13如果一个正多边形每一个内角都等于144,那么这个正多边形的边数是_14如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm),计算出这个立体图形的表面积15若关于x的方程有两个相等的实数根,则m的值是_16如图1,点P从ABC的顶点B出发,沿BCA匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则ABC的面积是_17关于x的一元二次方程x2+bx+c0的两根为x11,x22,则x2+bx+c分解因式的结果为_18图中是两个全等的正五边形,则=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证
6、明过程或演算步骤19(6分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB求证:ABE=EAD;若AEB=2ADB,求证:四边形ABCD是菱形20(6分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:(1)甲选择座位W的概率是多少;(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率21(6分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角=37,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(
7、参考数据:sin37=,cos37=,tan37=)(1)求把手端点A到BD的距离;(2)求CH的长.22(8分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整;(2)求扇形统计图中的A等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?
8、23(8分)某初中学校组织200位同学参加义务植树活动甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:表1:甲调查九年级30位同学植树情况 每人植树棵数78910人数36156表2:乙调查三个年级各10位同学植树情况 每人植树棵数678910人数363126根据以上材料回答下列问题:(1)关于于植树棵数,表1中的中位数是 棵;表2中的众数是 棵;(2)你认为同学 (填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?24(10分)如图,在自动向西的公路l上有一检查站A,在观测点
9、B的南偏西53方向,检查站一工作人员家住在与观测点B的距离为7km,位于点B南偏西76方向的点C处,求工作人员家到检查站的距离AC(参考数据:sin76,cos76,tan 764,sin53,tan53)25(10分)已知:如图,ABC=DCB,BD、CA分别是ABC、DCB 的平分线求证:AB=DC26(12分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?27(12分)如图,抛物线
10、y=ax2+bx+c与x轴相交于点A(3,0),B(1,0),与y轴相交于(0,),顶点为P(1)求抛物线解析式;(2)在抛物线是否存在点E,使ABP的面积等于ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】分析:依据AD是BC边上的高,ABC=60,即可得到BAD=30,依据BAC=50,AE平分BAC,即可得到D
11、AE=5,再根据ABC中,C=180ABCBAC=70,可得EAD+ACD=75详解:AD是BC边上的高,ABC=60,BAD=30,BAC=50,AE平分BAC,BAE=25,DAE=3025=5,ABC中,C=180ABCBAC=70,EAD+ACD=5+70=75,故选A点睛:本题考查了三角形内角和定理:三角形内角和为180解决问题的关键是三角形外角性质以及角平分线的定义的运用2、B【解析】分析:根据数量=,可知第一次买了千克,第二次买了,根据第二次恰好比第一次多买了 0.5 千克列方程即可.详解:设早上葡萄的价格是 x 元/千克,由题意得,.故选B.点睛:本题考查了分式方程的实际应用,
12、解题的关键是读懂题意,找出列方程所用到的等量关系.3、D【解析】根据有理数的除法可以解答本题【详解】解:(5)5=1,等式(5)5=1成立,则内的运算符号为,故选D【点睛】考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法4、C【解析】根据题意知小李所对应的坐标是(7,4).故选C.5、A【解析】分析:根据点A(a2,4)和B(3,2a2)到x轴的距离相等,得到4|2a2|,即可解答详解:点A(a2,4)和B(3,2a2)到x轴的距离相等,4|2a2|,a23,解得:a3,故选A点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数
13、6、B【解析】考点:概率公式专题:计算题分析:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,故概率为2/ 6 =1/ 3 故选B点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m /n 7、B【解析】试题分析:根据线段垂直平分线上的点到两端点的距离相等解答解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点故选B点评:本题考查了线段垂直平分线上的点到两端点
14、的距离相等的性质,熟记性质是解题的关键8、C【解析】通过分析图象,点F从点A到D用as,此时,FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a【详解】过点D作DEBC于点E.由图象可知,点F由点A到点D用时为as,FBC的面积为acm1.AD=a.DEADa.DE=1.当点F从D到B时,用s.BD=.RtDBE中,BE=,四边形ABCD是菱形,EC=a-1,DC=a,RtDEC中,a1=11+(a-1)1.解得a=.故选C【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系9、D【解析】先根据反比例函数与
15、正比例函数的性质求出B点坐标,再由函数图象即可得出结论【详解】解:反比例函数与正比例函数的图象均关于原点对称,A、B两点关于原点对称,点A的横坐标为1,点B的横坐标为-1,由函数图象可知,当-1x0或x1时函数y1=k1x的图象在的上方,当y1y1时,x的取值范围是-1x0或x1故选:D【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1y1时x的取值范围是解答此题的关键10、B【解析】根据图形和各个小题的说法可以判断是否正确,从而解答本题【详解】当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:4115000.822,但“罚球命中”的概率不一定
16、是0.822,故错误;随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2故正确;虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故错误故选:B【点睛】此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.11、C【解析】由切线的性质可知OAB=90,由圆周角定理可知BOA=54,根据直角三角形两锐角互余可知B=36【详解】解:AB与O相切于点A,OABAOAB=90CDA=27,BOA=54B=90-54=36故选C考点:切线的性质12、C【解析】根据因式分解法,可得答案【详解】解:因式分
17、解,得(x-2)(x+1)=0,于是,得x-2=0或x+1=0,解得x1=-1,x2=2,故选:C【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可【详解】解:设正多边形的边数为n,由题意得,=144,解得n=1故答案为1【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键14、100 mm1【解析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可【详解】根据
18、三视图可得:上面的长方体长4mm,高4mm,宽1mm,下面的长方体长8mm,宽6mm,高1mm,立体图形的表面积是:441+411+41+611+811+681-41=100(mm1)故答案为100 mm1【点睛】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键15、m=- 【解析】根据题意可以得到=0,从而可以求得m的值【详解】关于x的方程有两个相等的实数根,=,解得:.故答案为.16、12【解析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出线段长度解答【详解】根据题意观察图象可得BC=5,点
19、P在AC上运动时,BPAC时,BP有最小值,观察图象可得,BP的最小值为4,即BPAC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以的面积是=12.【点睛】本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型17、 (x1)(x2)【解析】根据方程的两根,可以将方程化为:a(xx1)(xx2)0(a0)的形式,对比原方程即可得到所求代数式的因式分解的结果【详解】解:已知方程的两根为:x11,x22,可得:(x1)(x2)0,x2+bx+c(x1)(x2),故答案为:(x1)(x2).【点睛】一元二次方程ax2
20、+bx+c0(a0,a、b、c是常数),若方程的两根是x1和x2,则ax2+bx+ca(xx1)(xx2)18、108【解析】先求出正五边形各个内角的度数,再求出BCD和BDC的度数,求出CBD,即可求出答案【详解】如图:图中是两个全等的正五边形,BC=BD,BCD=BDC,图中是两个全等的正五边形,正五边形每个内角的度数是=108,BCD=BDC=180-108=72,CBD=180-72-72=36,=360-36-108-108=108,故答案为108【点睛】本题考查了正多边形和多边形的内角和外角,能求出各个角的度数是解此题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说
21、明、证明过程或演算步骤19、(1)证明见解析;(2)证明见解析【解析】(1)根据平行四边形的对边互相平行可得ADBC,再根据两直线平行,内错角相等可得AEB=EAD,根据等边对等角可得ABE=AEB,即可得证(2)根据两直线平行,内错角相等可得ADB=DBE,然后求出ABD=ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可【详解】证明:(1)在平行四边形ABCD中,ADBC,AEB=EADAE=AB,ABE=AEBABE=EAD(2)ADBC,ADB=DBEABE=AEB,AEB=2ADB,ABE=2ADBABD=ABEDBE=2ADBADB=ADBAB=AD
22、又四边形ABCD是平行四边形,四边形ABCD是菱形20、(1);(2)【解析】(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得【详解】解:(1)由于共有A、B、W三个座位,甲选择座位W的概率为,故答案为:;(2)画树状图如下:由图可知,共有6种等可能结果,其中甲、乙选择相邻的座位有两种,所以P(甲乙相邻)=【点睛】此题考查了树状图法求概率注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比21、(1)12;(2)CH的长度是10cm【解析】(1)、过点A
23、作于点N,过点M作于点Q,根据RtAMQ中的三角函数得出得出AN的长度;(2)、根据ANB和AGC相似得出DN的长度,然后求出BN的长度,最后求出GC的长度,从而得出答案【详解】解:(1)、过点A作于点N,过点M作于点Q. 在中,. ,.(2)、根据题意:. . ,. . . .答:的长度是10cm .点睛:本题考查了相似三角形的应用以及三角函数的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题22、(1)图见解析;(2)126;(3)1【解
24、析】(1)利用被调查学生的人数=了解程度达到B等的学生数所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;(2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数被调查学生的人数360,即可求出结论;(3)利用该校现有学生数了解程度达到A等的学生所占比例,即可得出结论【详解】(1)4840%=120(人),12015%=18(人),120-48-18-1
25、2=42(人)将条形统计图补充完整,如图所示(2)42120100%360=126答:扇形统计图中的A等对应的扇形圆心角为126(3)1500=1(人)答:该校学生对政策内容了解程度达到A等的学生有1人【点睛】本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键23、(1)9,9;(2)乙;(3)1680棵;【解析】(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(
26、3)利用样本估计总体的方法计算即可【详解】(1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;故答案为:9,9;(2)乙同学所抽取的样本能更好反映此次植树活动情况;故答案为:乙;(3)由题意可得:(36+67+38+129+610)30200=1680(棵),答:本次活动200位同学一共植树1680棵【点睛】本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性24、工作人员家到检查站的距离AC的长约为km【解析】分析:过点B作BHl交l于点H,解RtBCH,得出CH=BCsinCBH=,BH=BCcosCBH=再解RtBAH中,求出AH=BH
27、tanABH=,那么根据AC=CH-AH计算即可.详解:如图,过点B作BHl交l于点H,在RtBCH中,BHC=90,CBH=76,BC=7km,CH=BCsinCBH,BH=BCcosCBH在RtBAH中,BHA=90,ABH=53,BH=,AH=BHtanABH,AC=CHAH=(km)答:工作人员家到检查站的距离AC的长约为km点睛:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键25、平分平分,在与中,【解析】分析:根据角平分线性质和已知求出ACB=DBC,根据ASA推出ABCDCB,根据全等三角形的性质推出即可解答:证明:AC平分BCD
28、,BC平分ABC,DBC=ABC,ACB=DCB,ABC=DCB,ACB=DBC,在ABC与DCB中,ABCDCB,AB=DC26、1人【解析】解:设九年级学生有x人,根据题意,列方程得:,整理得0.8(x+88)=x,解之得x=1经检验x=1是原方程的解答:这个学校九年级学生有1人 设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:,根据题意可得方程,解方程即可27、(1)y=x2+x(2)存在,(12,2)或(1+2,2)(3)点F的坐标为
29、(1,2)、(3,2)、(5,2),且平行四边形的面积为 1【解析】(1)设抛物线解析式为y=ax2+bx+c,把(3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根据抛物线解析式可知顶点P的坐标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P点坐标可知E点纵坐标,代入解析式求出x的值即可;(3)分别讨论AB为边、AB为对角线两种情况求出F点坐标并求出面积即可;【详解】(1)设抛物线解析式为y=ax2+bx+c,将(3,0),(1,0),(0,)代入抛物线解析式得,解得:a=,b=1,c=抛物线解析式:y=x2+x(2)存在y=x2+x=(x+1)22P点坐标为
30、(1,2)ABP的面积等于ABE的面积,点E到AB的距离等于2,设E(a,2),a2+a=2解得a1=12,a2=1+2符合条件的点E的坐标为(12,2)或(1+2,2)(3)点A(3,0),点B(1,0),AB=4若AB为边,且以A、B、P、F为顶点的四边形为平行四边形ABPF,AB=PF=4点P坐标(1,2)点F坐标为(3,2),(5,2)平行四边形的面积=42=1若AB为对角线,以A、B、P、F为顶点的四边形为平行四边形AB与PF互相平分设点F(x,y)且点A(3,0),点B(1,0),点P(1,2) ,x=1,y=2点F(1,2)平行四边形的面积=44=1综上所述:点F的坐标为(1,2)、(3,2)、(5,2),且平行四边形的面积为1【点睛】本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.