《2022-2023学年福建省莆田市仙游县第三片区中考数学考前最后一卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年福建省莆田市仙游县第三片区中考数学考前最后一卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论ab;|b|=|d|;a+c=a;ad0中
2、,正确的有()A4个B3个C2个D1个2某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A24.5,24.5B24.5,24C24,24D23.5,243已知圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,要使这两圆没有公共点,那么d的值可以取( )A11;B6;C3;D14在RtABC中,C=90,AC=1,BC=3,则A的正切值为()A3BCD5二次函数y=ax1+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线
3、x=1,下列结论:(1)4a+b=0;(1)9a+c3b;(3)7a3b+1c0;(4)若点A(3,y1)、点B(,y1)、点C(7,y3)在该函数图象上,则y1y3y1;(5)若方程a(x+1)(x5)=3的两根为x1和x1,且x1x1,则x115x1其中正确的结论有()A1个B3个C4个D5个6若正比例函数ymx(m是常数,m0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A2B2C4D47如图,ABCD,DBBC,2=50,则1的度数是()A40B50C60D1408将1、按如图方式排列,若规定(m、n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两
4、数之积是( )AB6CD9如图,正方形ABCD的对角线AC与BD相交于点O,ACB的角平分线分别交AB,BD于M,N两点若AM2,则线段ON的长为( )ABC1D10甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,则在本次测试中,成绩更稳定的同学是()A甲B乙C甲乙同样稳定D无法确定11如图,点D(0,3),O(0,0),C(4,0)在A上,BD是A的一条弦,则cosOBD()ABCD12下列解方程去分母正确的是( )A由,得2x133xB由,得2x2x4C由,得2y-15=3yD由,得3(y+1)2y+6二、填空题:(本大题共6个小题,每小题4分,共24分)
5、13化简:_14将一副三角板如图放置,若,则的大小为_15已知点P(2,3)在一次函数y2xm的图象上,则m_16一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_17不等式组的解集是_;18将一个含45角的三角板,如图摆放在平面直角坐标系中,将其绕点顺时针旋转75,点的对应点恰好落在轴上,若点的坐标为,则点的坐标为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)随着交通道路的不断完善,带动了
6、旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五一”长假期间旅游情况统计图,根据以下信息解答下列问题:2017年“五一”期间,该市周边景点共接待游客 万人,扇形统计图中A景点所对应的圆心角的度数是 ,并补全条形统计图根据近几年到该市旅游人数增长趋势,预计2018年“五一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果20(6分)如图,已知A(3,0),B(0,1),连接AB,过B点作AB的垂线段BC,使BA
7、BC,连接AC如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角BPQ,连接CQ,当点P在线段OA上,求证:PACQ;在(2)的条件下若C、P,Q三点共线,求此时APB的度数及P点坐标21(6分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(3,0),B(0,3),C(1,0)(1)求此抛物线的解析式(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PDAB于点D动点P在什么位置时,PDE的周长最大,求出此时P点的坐标22(8分)边长为6的等边ABC 中,点D
8、 ,E 分别在AC ,BC 边上,DEAB,EC 2如图1,将DEC 沿射线EC 方向平移,得到DEC,边DE与AC 的交点为M ,边CD与ACC的角平分线交于点N.当CC多大时,四边形MCND为菱形?并说明理由如图2,将DEC 绕点C 旋转(04+7或d11或d两圆半径的和;(1)两圆内含,此时圆心距大圆半径-小圆半径.4、A【解析】【分析】根据锐角三角函数的定义求出即可【详解】在RtABC中,C=90,AC=1,BC=3,A的正切值为=3,故选A【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键5、B【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=
9、-=1,即b=-4a,变形为4a+b=0,所以(1)正确;由x=-3时,y0,可得9a+3b+c0,可得9a+c-3c,故(1)正确;因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a0,因此7a3b+1c0,故(3)不正确;根据图像可知当x1时,y随x增大而增大,当x1时,y随x增大而减小,可知若点A(3,y1)、点B(,y1)、点C(7,y3)在该函数图象上,则y1=y3y1,故(4)不正确;根据函数的对称性可知函数与x轴的另一交点坐标为(5
10、,0),所以若方程a(x+1)(x5)=3的两根为x1和x1,且x1x1,则x11x1,故(5)正确正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b14ac0时,抛物线与x轴有1个交点;=b14ac=0时,抛物线与x轴有1个交点
11、;=b14ac0时,抛物线与x轴没有交点6、B【解析】利用待定系数法求出m,再结合函数的性质即可解决问题【详解】解:ymx(m是常数,m0)的图象经过点A(m,4),m24,m2,y的值随x值的增大而减小,m0,m2,故选:B【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型7、A【解析】试题分析:根据直角三角形两锐角互余求出3,再根据两直线平行,同位角相等解答解:DBBC,2=50,3=902=9050=40,ABCD,1=3=40故选A8、B【解析】根据数的排列方法可知,第一排:1个数,第二排2个数第三排3个数,第四排4个数,第m-1排
12、有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算【详解】第一排1个数,第二排2个数第三排3个数,第四排4个数,第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+(m-1)个数,根据数的排列方法,每四个数一个轮回,由此可知:(1,5)表示第1排从左向右第5个数是,(13,1)表示第13排从左向右第1个数,可以看出奇数排最中间的一个数都是1,第13排是奇数排,最中间的也就是这排的第7个数是1,那么第1个就是,则(1,5)与(13,1)表示的两数之积是1故选B9、
13、C【解析】作MHAC于H,如图,根据正方形的性质得MAH=45,则AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明CONCHM,再利用相似比可计算出ON的长【详解】试题分析:作MHAC于H,如图,四边形ABCD为正方形,MAH=45,AMH为等腰直角三角形,AH=MH=AM=2=,CM平分ACB,BM=MH=,AB=2+,AC=AB=(2+)=2+2,OC=AC=+1,CH=ACAH=2+2=2+,BDAC,ONMH,CONCHM,即,ON=1故选C
14、【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形也考查了角平分线的性质和正方形的性质10、A【解析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【详解】S甲2=1.4,S乙2=2.5,S甲2S乙2,甲、乙两名同学成绩更稳定的是甲;故选A【点睛】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定
15、;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定11、C【解析】根据圆的弦的性质,连接DC,计算CD的长,再根据直角三角形的三角函数计算即可.【详解】D(0,3),C(4,0),OD3,OC4,COD90,CD 5,连接CD,如图所示:OBDOCD,cosOBDcosOCD 故选:C【点睛】本题主要三角函数的计算,结合考查圆性质的计算,关键在于利用等量替代原则.12、D【解析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可【详解】A由,得:2x633x,此选项错误;B由,得:2
16、x4x4,此选项错误;C由,得:5y153y,此选项错误;D由,得:3( y+1)2y+6,此选项正确故选D【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据平面向量的加法法则计算即可【详解】.故答案为:【点睛】本题考查平面向量的加减法则,解题的关键是熟练掌握平面向量的加减法则,注意平面向量的加减适合加法交换律以及结合律,适合去括号法则14、160【解析】试题分析:先求出COA和BOD的度数,代入BOC=COA+AO
17、D+BOD求出即可解:AOD=20,COD=AOB=90,COA=BOD=9020=70,BOC=COA+AOD+BOD=70+20+70=160,故答案为160考点:余角和补角15、1【解析】根据待定系数法求得一次函数的解析式,解答即可【详解】解:一次函数y=2x-m的图象经过点P(2,3),3=4-m,解得m=1,故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式16、1【解析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值【详解】解:根据题意得1%,解得n1,所以这个不透明的盒子里大约有1个除颜色外其他完全相
18、同的小球故答案为1【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率17、9x1【解析】分别求出两个不等式的解集,再求其公共解集【详解】,解不等式,得:x-1,解不等式,得:x-9,所以不等式组的解集为:-9x-1,故答案为:-9x-1【点睛】本题考查一元一次不等式组的解法,属于基础题求不等式组的解集,要遵循以下原则:同大取较大,同小取
19、较小,小大大小中间找,大大小小解不了18、【解析】先求得ACO=60,得出OAC=30,求得AC=2OC=2,解等腰直角三角形求得直角边为,从而求出B的坐标【详解】解:ACB=45,BCB=75,ACB=120,ACO=60,OAC=30,AC=2OC,点C的坐标为(1,0),OC=1,AC=2OC=2,ABC是等腰直角三角形,B点的坐标为【点睛】此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)50,108,补图见解析;(2)
20、9.6;(3)【解析】(1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比360进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据E景点接待游客数所占的百分比,即可估计2018年“五一”节选择去E景点旅游的人数;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率【详解】解:(1)该市周边景点共接待游客数为:1530%=50(万人),A景点所对应的圆心角的度数是:30%360=108,B景点接待游客数为:502
21、4%=12(万人),补全条形统计图如下:(2)E景点接待游客数所占的百分比为:100%=12%,2018年“五一”节选择去E景点旅游的人数约为:8012%=9.6(万人);(3)画树状图可得:共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,同时选择去同一个景点的概率=【点睛】本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图20、(1)C(1,-4)(2)证明见解析;(3)APB=135,P(1,0)【解析】(1)作CHy轴于H,证明ABOBCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;(2)证明PB
22、AQBC,根据全等三角形的性质得到PA=CQ;(3)根据C、P,Q三点共线,得到BQC=135,根据全等三角形的性质得到BPA=BQC=135,根据等腰三角形的性质求出OP,得到P点坐标【详解】(1)作CHy轴于H,则BCH+CBH=90,ABBC,ABO+CBH=90,ABO=BCH,在ABO和BCH中,ABOBCH,BH=OA=3,CH=OB=1,OH=OB+BH=4,C点坐标为(1,4);(2)PBQ=ABC=90,PBQABQ=ABCABQ,即PBA=QBC,在PBA和QBC中,PBAQBC,PA=CQ;(3)BPQ是等腰直角三角形,BQP=45,当C、P,Q三点共线时,BQC=135
23、,由(2)可知,PBAQBC,BPA=BQC=135,OPB=45,OP=OB=1,P点坐标为(1,0)【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键21、(1)y=x22x+1;(2)( ,)【解析】(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;(2)先证明AOB是等腰直角三角形,得出BAO=45,再证明PDE是等腰直角三角形,则PE越大,PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),
24、E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根据二次函数的性质可知当x=-时,PE最大,PDE的周长也最大将x=-代入-x2-2x+1,进而得到P点的坐标【详解】解:(1)抛物线y=ax2+bx+c经过点A(1,0),B(0,1),C(1,0),解得,抛物线的解析式为y=x22x+1;(2)A(1,0),B(0,1),OA=OB=1,AOB是等腰直角三角形,BAO=45PFx轴,AEF=9045=45,又PDAB,PDE是等腰直角三角形,PE越大,PDE的周长越大设直线AB的解析式为y=kx+b,则,解得,即直线AB的解析式为y=x+1设P点的坐标为
25、(x,x22x+1),E点的坐标为(x,x+1),则PE=(x22x+1)(x+1)=x21x=(x+)2+,所以当x=时,PE最大,PDE的周长也最大当x=时,x22x+1=()22()+1=,即点P坐标为(,)时,PDE的周长最大【点睛】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中22、 (1) 当CC=时,四边形MCND是菱形,理由见解析;(2)AD=BE,理由见解析;【解析】(1)先判断出四边形MCND为平行四边形,再由菱形的性质得出CN=CM,即可求出CC;(2
26、)分两种情况,利用旋转的性质,即可判断出ACDBCE即可得出结论;先判断出点A,C,P三点共线,先求出CP,AP,最后用勾股定理即可得出结论【详解】(1)当CC=时,四边形MCND是菱形理由:由平移的性质得,CDCD,DEDE,ABC是等边三角形,B=ACB=60,ACC=180-ACB=120,CN是ACC的角平分线,DEC=ACC=60=B,DEC=NCC,DECN,四边形MCND是平行四边形,MEC=MCE=60,NCC=NCC=60,MCE和NCC是等边三角形,MC=CE,NC=CC,EC=2,四边形MCND是菱形,CN=CM,CC=EC=;(2)AD=BE,理由:当180时,由旋转的
27、性质得,ACD=BCE,由(1)知,AC=BC,CD=CE,ACDBCE, AD=BE,当=180时,AD=AC+CD,BE=BC+CE,即:AD=BE,综上可知:AD=BE如图连接CP,在ACP中,由三角形三边关系得,APAC+CP,当点A,C,P三点共线时,AP最大,如图1,在DCE中,由P为DE的中点,得APDE,PD=,CP=3,AP=6+3=9,在RtAPD中,由勾股定理得,AD=【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(1)的关键是四边形MCND是平行四边形,解(2)的关键是判断出点A,C,P三
28、点共线时,AP最大23、(1)见解析(2)图中阴影部分的面积为.【解析】(1)连接OC只需证明OCD90根据等腰三角形的性质即可证明;(2)先根据直角三角形中30的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积【详解】(1)证明:连接OCACCD,ACD120,AD30OAOC,2A30OCDACD290,即OCCD,CD是O的切线;(2)解:12A60S扇形BOC在RtOCD中,D30,OD2OC4,CDSRtOCDOCCD2图中阴影部分的面积为:24、(1)y=x+1;(2)1x2;(3)3;【解析】(1)根据
29、待定系数法求一次函数和二次函数的解析式即可.(2)根据图象以及点A,B两点的坐标即可求出使二次函数的值大于一次函数的值的x的取值范围;(3)连接AC、BC,设直线AB交y轴于点D,根据即可求出ABC的面积.【详解】(1)把A(1,2)代入y=x2+c得:1+c=2,解得:c=3,y=x2+3,把B(2,n)代入y=x2+3得:n=1,B(2,1),把A(1,2)、B(2,1)分别代入y=kx+b得 解得: y=x+1;(2)根据图象得:使二次函数的值大于一次函数的值的x的取值范围是1x2;(3)连接AC、BC,设直线AB交y轴于点D,把x=0代入y=x2+3得:y=3,C(0,3),把x=0代
30、入y=x+1得:y=1,D(0,1),CD=31=2,则【点睛】考查待定系数法求二次函数解析式,三角形的面积公式等,掌握待定系数法是解题的关键.25、(1)5.3(2)见解析(3)2.5或6.9【解析】(1)(2)按照题意取点、画图、测量即可(3)中需要将DE=2OE转换为y与x的函数关系,注意DE为非负数,函数为分段函数【详解】(1)根据题意取点、画图、测量的x=6时,y=5.3故答案为5.3(2)根据数据表格画图象得(3)当DE=2OE时,问题可以转化为折线y= 与(2)中图象的交点经测量得x=2.5或6.9时DE=2OE故答案为2.5或6.9【点睛】动点问题的函数图象探究题,考查了函数图
31、象的画法,应用了数形结合思想和转化的数学思想26、(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【解析】试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据题意,2000x+2500(
32、30-x)=68000,解得x=14,30-x=16,答:种植A种生姜14亩,种植B种生姜16亩;(2)由题意得,x(30-x),解得x10,设全部收购该基地生姜的年总收入为y元,则y=82000x+72500(30-x)=-1500x+525000,y随x的增大而减小,当x=10时,y有最大值,此时,30-x=20,y的最大值为510000元,答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【点睛】本题考查了一次函数的应用关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式27、(1,0)、(2,0)【解析】试题分析:抛物线与x轴交点的纵坐标等于零,由此解答即可试题解析:解:令,即解得:,该抛物线与轴的交点坐标为(2,0),(1,0)