2022-2023学年广西贺州市桂梧高中高三下学期联合考试数学试题含解析.doc

上传人:茅**** 文档编号:87797914 上传时间:2023-04-17 格式:DOC 页数:18 大小:1.81MB
返回 下载 相关 举报
2022-2023学年广西贺州市桂梧高中高三下学期联合考试数学试题含解析.doc_第1页
第1页 / 共18页
2022-2023学年广西贺州市桂梧高中高三下学期联合考试数学试题含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2022-2023学年广西贺州市桂梧高中高三下学期联合考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广西贺州市桂梧高中高三下学期联合考试数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1平行四边形中,已知,点、分别满足,且,则向量在上的投影为( )A2BCD2某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是( )A各月最

2、高气温平均值与最低气温平均值总体呈正相关B全年中,2月份的最高气温平均值与最低气温平均值的差值最大C全年中各月最低气温平均值不高于10C的月份有5个D从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势3若不等式在区间内的解集中有且仅有三个整数,则实数的取值范围是( )ABCD4已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是( )A若,且,则B若,且,则C若,且,则D若,且,则5不等式的解集记为,有下面四个命题:;.其中的真命题是( )ABCD6有一改形塔几何体由若千个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中

3、点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是( )A8B7C6D47如图,在中,点M是边的中点,将沿着AM翻折成,且点不在平面内,点是线段上一点.若二面角与二面角的平面角相等,则直线经过的( )A重心B垂心C内心D外心8在原点附近的部分图象大概是( )ABCD9若,点C在AB上,且,设,则的值为( )ABCD10已知双曲线的中心在原点且一个焦点为,直线与其相交于,两点,若中点的横坐标为,则此双曲线的方程是ABCD11已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为( )ABCD12已知是等差数列的前项和,若,设,则数

4、列的前项和取最大值时的值为( )A2020B20l9C2018D2017二、填空题:本题共4小题,每小题5分,共20分。13已知函数在上单调递增,则实数a值范围为_.14已知椭圆的左、右焦点分别为、,过椭圆的右焦点作一条直线交椭圆于点、.则内切圆面积的最大值是_.15已知函数函数,则不等式的解集为_16设向量,且,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示(

5、)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);()填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”女生男生总计获奖不获奖总计附表及公式:其中,18(12分)在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.(1)求动点的轨迹的方程;(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.19(12分)如图,在四边形中,.(1)求的长;(2)若的面积为6,求的值.20(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不

6、仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A 级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B 级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C 级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D 级.已知每一次质量把关中一件手工艺品被1位

7、行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.求10件手工艺品中不能外销的手工艺品最有可能是多少件;记1件手工艺品的利润为X元,求X的分布列与期望.21(12分)设函数.(1)解不等式;(2)记的最大值为,若实数、满足,求证:.22(10分)在中,角的对边分别为.已知,.(1)若,求;(2)求的面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的

8、。1、C【解析】将用向量和表示,代入可求出,再利用投影公式可得答案.【详解】解:,得,则向量在上的投影为.故选:C.【点睛】本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.2、D【解析】根据折线图依次判断每个选项得到答案.【详解】由绘制出的折线图知:在A中,各月最高气温平均值与最低气温平均值为正相关,故A正确;在B中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B正确;在C中,全年中各月最低气温平均值不高于10的月份有1月,2月,3月,11月,12月,共5个,故C正确;在D中,从2018年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降

9、,故D错误.故选:D.【点睛】本题考查了折线图,意在考查学生的理解能力.3、C【解析】由题可知,设函数,根据导数求出的极值点,得出单调性,根据在区间内的解集中有且仅有三个整数,转化为在区间内的解集中有且仅有三个整数,结合图象,可求出实数的取值范围.【详解】设函数,因为,所以,或,因为 时,或时,其图象如下:当时,至多一个整数根;当时,在内的解集中仅有三个整数,只需,所以.故选:C.【点睛】本题考查不等式的解法和应用问题,还涉及利用导数求函数单调性和函数图象,同时考查数形结合思想和解题能力.4、D【解析】利用线面平行和垂直的判定定理和性质定理,对选项做出判断,举出反例排除.【详解】解:对于,当,

10、且,则与的位置关系不定,故错;对于,当时,不能判定,故错;对于,若,且,则与的位置关系不定,故错;对于,由可得,又,则故正确故选:【点睛】本题考查空间线面位置关系.判断线面位置位置关系利用好线面平行和垂直的判定定理和性质定理. 一般可借助正方体模型,以正方体为主线直观感知并准确判断5、A【解析】作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【详解】作出可行域如图所示,当时,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.6、A【解析】则从下往上第二层正方体的棱长为:,从下往上第三

11、层正方体的棱长为:,从下往上第四层正方体的棱长为:,以此类推,能求出改形塔的最上层正方体的边长小于1时该塔形中正方体的个数的最小值的求法.【详解】最底层正方体的棱长为8,则从下往上第二层正方体的棱长为:,从下往上第三层正方体的棱长为:,从下往上第四层正方体的棱长为:,从下往上第五层正方体的棱长为:,从下往上第六层正方体的棱长为:,从下往上第七层正方体的棱长为:,从下往上第八层正方体的棱长为:,改形塔的最上层正方体的边长小于1,那么该塔形中正方体的个数至少是8.故选:A.【点睛】本小题主要考查正方体有关计算,属于基础题.7、A【解析】根据题意到两个平面的距离相等,根据等体积法得到,得到答案.【详

12、解】二面角与二面角的平面角相等,故到两个平面的距离相等.故,即,两三棱锥高相等,故,故,故为中点.故选:.【点睛】本题考查了二面角,等体积法,意在考查学生的计算能力和空间想象能力.8、A【解析】分析函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【详解】令,可得,即函数的定义域为,定义域关于原点对称,则函数为奇函数,排除C、D选项;当时,则,排除B选项.故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.9、B【解析】利用向量的数量积运算即可算出【详解】解:,又在上,

13、故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用10、D【解析】根据点差法得,再根据焦点坐标得,解方程组得,即得结果.【详解】设双曲线的方程为,由题意可得,设,则的中点为,由且,得 , ,即,联立,解得,故所求双曲线的方程为故选D【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.11、D【解析】由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.【详解】由题意得,.故选:D.【点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.12、B【解析】根据题意计算,计

14、算,得到答案.【详解】是等差数列的前项和,若,故,故,当时,当时,故前项和最大.故选:.【点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由在上恒成立可求解【详解】,令,又,从而,令,问题等价于在时恒成立,解得故答案为:【点睛】本题考查函数的单调性,解题关键是问题转化为恒成立,利用换元法和二次函数的性质易求解14、【解析】令直线:,与椭圆方程联立消去得,可设,则,可知,又,故三角形周长与三角形内切圆的半径的积是三角形面积的二倍,则内切圆半径,其面积最大值为故本题应填点睛:圆锥曲线中最值与范围的求法有两种:(

15、)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法()代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立起目标函数,再求这个函数的最值,求函数最值的常用方法有配方法,判别式法,重要不等式及函数的单调性法等15、【解析】,所以,所以的解集为。点睛:本题考查绝对值不等式。本题先对绝对值函数进行分段处理,再得到的解析式,求得的分段函数解析式,再解不等式即可。绝对值函数一般都去绝对值转化为分段函数处理。16、【解析】根据向量的数量积的计算,以及向量的平方,简单计算,可得结果.【详解】由题可知:且由所以故答案为:【点睛】本题考查向量的坐标计算,主要考查

16、计算,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(),;()详见解析.【解析】()根据概率的性质知所有矩形的面积之和等于列式可解得; ()由频率分布直方图知样本中获奖的人数为,不获奖的人数为,从而可得列联表,再计算出,与临界值比较可得【详解】解:(),()由频率分布直方图知样本中获奖的人数为,不获奖的人数为,列联表如下:女生男生总计获奖不获奖总计因为,所以在犯错误的概率不超过的前提下能认为“获奖与女生,男生有关”【点睛】本题主要考查独立性检验,以及由频率分布直方图求平均数的问题,熟记独立性检验的思想,以及平均数的计算方法即可,属于常考题型.18、(1);(2

17、)【解析】(1)设,根据题意可得点的轨迹方程满足的等式,化简即可求得动点的轨迹的方程;(2)设出切线的斜率分别为,切点,点,则可得过点的拋物线的切线方程为,联立抛物线方程并化简,由相切时可得两条切线斜率关系;由抛物线方程求得导函数,并由导数的几何意义并代入抛物线方程表示出,可求得,结合点满足的方程可得的取值范围,即可求得的范围.【详解】(1)设点,点到直线的距离等于,化简得,动点的轨迹的方程为.(2)由题意可知,的斜率都存在,分别设为,切点,设点,过点的拋物线的切线方程为,联立,化简可得,即,.由,求得导函数,因为点满足,由圆的性质可得,即直线斜率的取值范围为.【点睛】本题考查了动点轨迹方程的

18、求法,直线与抛物线相切的性质及应用,导函数的几何意义及应用,点和圆位置关系求参数的取值范围,属于中档题.19、 (1) (2) 【解析】(1)利用余弦定理可得的长;(2)利用面积得出,结合正弦定理可得.【详解】解:(1)由题可知.在中,所以.(2),则.又,所以.【点睛】本题主要考查利用正弦定理和余弦定理解三角形,已知角较多时一般选用正弦定理,已知边较多时一般选用余弦定理.20、(1)(2)2 期望值为X900600300100P【解析】(1)一件手工艺品质量为B级的概率为.(2)由题意可得一件手工艺品质量为D 级的概率为,设10件手工艺品中不能外销的手工艺品可能是件,则,则,.由得,所以当时

19、,即,由得,所以当时,所以当时,最大,即10件手工艺品中不能外销的手工艺品最有可能是2件. 由上可得一件手工艺品质量为A 级的概率为,一件手工艺品质量为B级的概率为,一件手工艺品质量为C 级的概率为,一件手工艺品质量为D 级的概率为,所以X的分布列为X900600300100P则期望为.21、(1)(2)证明见解析【解析】(1)采用零点分段法:、,由此求解出不等式的解集;(2)先根据绝对值不等式的几何意义求解出的值,然后利用基本不等式及其变形完成证明.【详解】(1)当时,不等式为,解得当时,不等式为,解得当时,不等式为,解得原不等式的解集为(2)当且仅当即时取等号,(当且仅当时取“”)同理可得,(当且仅当时取“”)【点睛】本题考查绝对值不等式的解法以及利用基本不等式证明不等式,难度一般.(1)常见的绝对值不等式解法:零点分段法、图象法、几何意义法;(2)利用基本不等式完成证明时,注意说明取等号的条件.22、(1);(2)4【解析】(1)根据已知用二倍角余弦求出,进而求出,利用正弦定理,即可求解;(2)由边角,利用余弦定理结合基本不等式,求出的最大值,即可求出结论.【详解】(1),由正弦定理得.(2)由(1)知,所以,当且仅当时,的面积有最大值4.【点睛】本题考查正弦定理、余弦定理、三角恒等变换解三角形,应用基本不等式求最值,属于基础题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁