《2022-2023学年江苏省无锡市洋溪中学中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年江苏省无锡市洋溪中学中考数学对点突破模拟试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图,点A、B、C都在O上,若AOC=140,则B的度数是()A70B80C110D1402cos30的相反数是()ABCD3下列式子成立的有( )个的倒数是2(2a2)38a5()2方程x23x+10有两个不等的实数根A1B2C3D4
2、4下列图形中,既是轴对称图形又是中心对称图形的是()A等边三角形B菱形C平行四边形D正五边形5已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同若从该布袋里任意摸出1个球,是红球的概率为,则a等于( )ABCD6如图,O的半径为1,ABC是O的内接三角形,连接OB、OC,若BAC与BOC互补,则弦BC的长为()AB2C3D1.57如图,在RtABC中,ACB=90,CDAB,垂足为D,AB=c,A=,则CD长为()Acsin2Bccos2CcsintanDcsincos8如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为(
3、)A(,-1)B(2,1)C(1,-)D(1,)9对于二次函数,下列说法正确的是( )A当x0,y随x的增大而增大B当x=2时,y有最大值3C图像的顶点坐标为(2,7)D图像与x轴有两个交点10如图,是的直径,弦,垂足为点,点是上的任意一点,延长交的延长线于点,连接.若,则等于( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11把多项式3x212因式分解的结果是_12如图,AD=DF=FB,DEFGBC,则S:S:S=_.13如果方程x2-4x+3=0的两个根分别是RtABC的两条边,ABC最小的角为A,那么tanA的值为14若圆锥的母线长为cm,其侧面积,则圆锥底面半径为
4、cm15某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_16如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_m三、解答题(共8题,共72分)17(8分)如图 1,在平面直角坐标系中,O 是坐标原点,长方形 OACB 的顶点 A、B 分别在 x 轴与 y 轴上,已知 OA=6,OB=1点 D 为 y 轴上一点,其坐标为(0,2), 点 P 从点 A 出发以每秒 2 个单位的速度沿线段 ACCB 的方向运动,当点 P 与点 B 重合 时停止运动,运动时间为 t 秒(1)
5、当点 P 经过点 C 时,求直线 DP 的函数解析式;(2)如图,把长方形沿着 OP 折叠,点 B 的对应点 B恰好落在 AC 边上,求点 P 的坐标(3)点 P 在运动过程中是否存在使BDP 为等腰三角形?若存在,请求出点 P 的坐标;若 不存在,请说明理由18(8分)先化简,再求值:(x2y)2+(x+y)(x4y),其中x5,y19(8分)在平面直角坐标系中,二次函数y=x2+ax+2a+1的图象经过点M(2,-3)。(1)求二次函数的表达式;(2)若一次函数y=kx+b(k0)的图象与二次函数y=x2+ax+2a+1的图象经过x轴上同一点,探究实数k,b满足的关系式;(3)将二次函数y
6、=x2+ax+2a+1的图象向右平移2个单位,若点P(x0,m)和Q(2,n)在平移后的图象上,且mn,结合图象求x0的取值范围20(8分)如图,AB是O的直径,点C是的中点,连接AC并延长至点D,使CDAC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交O于点H,连接BH求证:BD是O的切线;(2)当OB2时,求BH的长21(8分)先化简后求值:已知:x=2,求的值22(10分)如图,在1010的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”设对称轴平行于y轴的抛
7、物线与网格对角线OM的两个交点为A,B,其顶点为C,如果ABC是该抛物线的内接格点三角形,AB=3,且点A,B,C的横坐标xA,xB,xC满足xAxCxB,那么符合上述条件的抛物线条数是()A7B8C14D1623(12分)如图,直线ABCD,BC平分ABD,1=65,求2的度数.24(1)计算:;(2)已知ab,求(a2)2+b(b2a)+4(a1)的值参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】分析:作对的圆周角APC,如图,利用圆内接四边形的性质得到P=40,然后根据圆周角定理求AOC的度数详解:作对的圆周角APC,如图,P=AOC=140=70P+B=180,B
8、=18070=110,故选:C点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半2、C【解析】先将特殊角的三角函数值代入求解,再求出其相反数【详解】cos30=,cos30的相反数是,故选C【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念3、B【解析】根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断【详解】解:的倒数是2,故正确;(2a2)38a6,故错误;(-)2,故错误;因为(3)241150,所以方程x23x+10有两个不等的实数根,故正确故选B【点睛】考查了倒数的定
9、义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答4、B【解析】在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内一个图形绕某个点旋转180,如果旋转前后的图形能互相重合,那么这个图形叫做中心对称图形,分别判断各选项即可解答.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;B、菱形是轴对称图形,也是中心对称图形,故此选项正确;C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;D、正五边形是轴对称图形,不是中心对称图形,故此选项错误故选:B【点睛】本题考查了轴对称图形和中
10、心对称图形的定义,熟练掌握是解题的关键.5、A【解析】此题考查了概率公式的应用注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A.6、A【解析】分析:作OHBC于H,首先证明BOC=120,在RtBOH中,BH=OBsin60=1,即可推出BC=2BH=,详解:作OHBC于HBOC=2BAC,BOC+BAC=180,BOC=120,OHBC,OB=OC,BH=HC,BOH=HOC=60,在RtBOH中,BH=OBsin60=1,BC=2BH=.故选A点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题
11、的关键是学会添加常用辅助线7、D【解析】根据锐角三角函数的定义可得结论.【详解】在RtABC中,ACB=90,AB=c,A=a,根据锐角三角函数的定义可得sin= ,BC=csin,A+B=90,DCB+B=90,DCB=A=在RtDCB中,CDB=90,cosDCB= ,CD=BCcos=csincos,故选D8、A【解析】作ADy轴于D,作CEy轴于E,则ADO=OEC=90,得出1+1=90,由正方形的性质得出OC=AO,1+3=90,证出3=1,由AAS证明OCEAOD,得到OE=AD=1,CE=OD=,即可得出结果【详解】解:作ADy轴于D,作CEy轴于E,如图所示:则ADO=OEC
12、=90,1+1=90AO=1,AD=1,OD=,点A的坐标为(1,),AD=1,OD=四边形OABC是正方形,AOC=90,OC=AO,1+3=90,3=1在OCE和AOD中,OCEAOD(AAS),OE=AD=1,CE=OD=,点C的坐标为(,1)故选A【点睛】本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键9、B【解析】二次函数,所以二次函数的开口向下,当x2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口
13、向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.10、B【解析】连接BD,利用直径得出ABD=65,进而利用圆周角定理解答即可【详解】连接BD,AB是直径,BAD=25,ABD=90-25=65,AGD=ABD=65,故选B【点睛】此题考查圆周角定理,关键是利用直径得出ABD=65二、填空题(本大题共6个小题,每小题3分,共18分)11、3(x+2)(x-2)【解析】因式分解时首先考虑提公因式,再考虑运用公式法;多项式3x212因式分解先提公因式3,再利用平方差公式因式分解.【详解】3x212=3()=312、1:3:5【解析】DEFGBC,ADEAFGABC,AD
14、=DF=FB,AD:AF:AB=1:2:3, =1:4:9,S:S:S=1:3:5.故答案为1:3:5.点睛: 本题考查了平行线的性质及相似三角形的性质相似三角形的面积比等于相似比的平方13、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,当3是直角边时,ABC最小的角为A,tanA=;当3是斜边时,根据勾股定理,A的邻边=,tanA=;所以tanA的值为或14、3【解析】圆锥的母线长是5cm,侧面积是15cm2,圆锥的侧面展开扇形的弧长为:l=6,锥的侧面展开扇形的弧长等于圆锥的底面周长,r=3cm,15、85【解析】根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解
15、题.【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,这六位同学成绩的中位数是85.【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.16、m【解析】利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2即为圆锥的底面半径【详解】解:易得扇形的圆心角所对的弦是直径,扇形的半径为: m,扇形的弧长为: m,圆锥的底面半径为:2m【点睛】本题考查:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长,解题关键是弧长公式三、解答题(共8题,共72分)17、(1)y=x+2;(2)y=x
16、+2;(2)S=2t+16,点P的坐标是(,1);(3)存在,满足题意的P坐标为(6,6)或(6,2+2)或(6,12)【解析】分析:(1)设直线DP解析式为y=kx+b,将D与B坐标代入求出k与b的值,即可确定出解析式;(2)当P在AC段时,三角形ODP底OD与高为固定值,求出此时面积;当P在BC段时,底边OD为固定值,表示出高,即可列出S与t的关系式;设P(m,1),则PB=PB=m,根据勾股定理求出m的值,求出此时P坐标即可;(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可详解:(1)如图1,OA=6,OB=1,四边形OACB为长方形,C(
17、6,1)设此时直线DP解析式为y=kx+b,把(0,2),C(6,1)分别代入,得,解得则此时直线DP解析式为y=x+2;(2)当点P在线段AC上时,OD=2,高为6,S=6;当点P在线段BC上时,OD=2,高为6+12t=162t,S=2(162t)=2t+16;设P(m,1),则PB=PB=m,如图2,OB=OB=1,OA=6,AB=8,BC=18=2,PC=6m,m2=22+(6m)2,解得m=则此时点P的坐标是(,1);(3)存在,理由为:若BDP为等腰三角形,分三种情况考虑:如图3,当BD=BP1=OBOD=12=8,在RtBCP1中,BP1=8,BC=6,根据勾股定理得:CP1=2
18、,AP1=12,即P1(6,12);当BP2=DP2时,此时P2(6,6);当DB=DP3=8时,在RtDEP3中,DE=6,根据勾股定理得:P3E=2,AP3=AE+EP3=2+2,即P3(6,2+2),综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,12)点睛:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键18、2x27xy,1【解析】根据完全平方公式及多项式的乘法法则展开,然后合并同类项进行化简,然后把x、y的值代入求值即可.【详解】原式x24xy+4y
19、2+x24xy+xy4y22x27xy,当x5,y时,原式5071【点睛】完全平方公式和多项式的乘法法则是本题的考点,能够正确化简多项式是解题的关键.19、 (1)y=x2-2x-3;(2)k=b;(3)x02或x01【解析】(1)将点M坐标代入y=x2+ax+2a+1,求出a的值,进而可得到二次函数表达式;(2)先求出抛物线与x轴的交点,将交点代入一次函数解析式,即可得到k,b满足的关系;(3)先求出平移后的新抛物线的解析式,确定新抛物线的对称轴以及Q的对称点Q,根据mn结合图像即可得到x0的取值范围.【详解】(1)把M(2,-3)代入y=x2+ax+2a+1,可以得到1+2a+2a+1=-
20、3,a=-2,因此,二次函数的表达式为:y=x2-2x-3;(2)y=x2-2x-3与x轴的交点是:(3,0),(-1,0)当y=kx+b(k0)经过(3,0)时,3k+b=0;当y=kx+b(k0)经过(-1,0)时,k=b(3)将二次函数y=x2-2x-3的图象向右平移2个单位得到y=x2-6x+5,对称轴是直线x=3,因此Q(2,n)在图象上的对称点是(1,n),若点P(x0,m)使得mn,结合图象可以得出x02或x01【点睛】本题主要考查二次函数的图像和性质,熟练掌握这些知识点是解题的关键.20、(1)证明见解析;(2)BH【解析】(1)先判断出AOC=90,再判断出OCBD,即可得出
21、结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论【详解】(1)连接OC,AB是O的直径,点C是的中点,AOC90,OAOB,CDAC,OC是ABD是中位线,OCBD,ABDAOC90,ABBD,点B在O上,BD是O的切线;(2)由(1)知,OCBD,OCEBFE,OB2,OCOB2,AB4,BF3,在RtABF中,ABF90,根据勾股定理得,AF5,SABFABBFAFBH,ABBFAFBH,435BH,BH【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键21、 【解析】先根据分式混合运
22、算顺序和运算法则化简原式,再将x的值代入计算可得【详解】解:原式=1()=1=1=,当x=2时,原式=【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则22、C【解析】根据在OB上的两个交点之间的距离为3,可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解【详解】解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛
23、物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=1故选C【点睛】本题是二次函数综合题主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观23、50.【解析】试题分析:由平行线的性质得到ABC=1=65,ABD+BDE=180,由BC平分ABD,得到ABD=2ABC=130,于是得到结论解:ABCD,ABC=1=65,BC平分ABD,ABD=2ABC=130,BDE=180ABD=50,2=BDE=50【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出ABD的度数,题目较好,难度不大24、(1);(1)1.【解析】(1)先计算负整数指数幂、化简二次根式、代入三角函数值、计算零指数幂,再计算乘法和加减运算可得;(1)先根据整式的混合运算顺序和运算法则化简原式,再利用完全平方公式因式分解,最后将ab的值整体代入计算可得【详解】(1)原式=4+181=4+141=11;(1)原式=a14a+4+b11ab+4a4=a11ab+b1=(ab)1,当ab=时,原式=()1=1【点睛】本题主要考查实数和整式的混合运算,解题的关键是掌握实数与整式的混合运算顺序和运算法则及完全平方公式因式分解的能力