2022-2023学年平顶山市重点中学中考一模数学试题含解析.doc

上传人:茅**** 文档编号:87797716 上传时间:2023-04-17 格式:DOC 页数:15 大小:548.50KB
返回 下载 相关 举报
2022-2023学年平顶山市重点中学中考一模数学试题含解析.doc_第1页
第1页 / 共15页
2022-2023学年平顶山市重点中学中考一模数学试题含解析.doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《2022-2023学年平顶山市重点中学中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年平顶山市重点中学中考一模数学试题含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1 (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A2BC5D2在下列网格中,小正方形的边长为1,

2、点A、B、O都在格点上,则的正弦值是ABCD3如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A(2017,0)B(2017,)C(2018,)D(2018,0)4若不等式组无解,那么m的取值范围是()Am2Bm2Cm2Dm25若ABC与DEF相似,相似比为2:3,则这两个三角形的面积比为( )A2:3B3:2C4:9D9:46如图,点A是反比例函数y=的图象上的一点,过点A作ABx轴,垂足为B点C为y轴上的一点,连接AC,BC若ABC的面积为3,则k的值

3、是( )A3B3C6D67下列计算正确的是()Aa4+a5=a9 B(2a2b3)2=4a4b6C2a(a+3)=2a2+6a D(2ab)2=4a2b28如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点已知菱形的一个角为60,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若也在格点上,且AED=ACD,则AEC 度数为 ( ) A75B60C45D309如图,要使ABCD成为矩形,需添加的条件是()AAB=BCBABC=90CACBDD1=210如图:已知ABBC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是()A3B3.5C4D5二、填空题(共

4、7小题,每小题3分,满分21分)11计算:(+)=_12因式分解:4x2y9y3_13在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_m14方程的解为_.15两地相距的路程为240千米,甲、乙两车沿同一线路从地出发到地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达地.甲、乙两车相距的路程(千米)与甲车行驶时间(小时)之间的关系如图所示,求乙车修好时,甲车距地还有_千米.16如图是一张长方形纸片ABCD,

5、已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_17如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_三、解答题(共7小题,满分69分)18(10分)对于方程1,某同学解法如下:解:方程两边同乘6,得3x2(x1)1 去括号,得3x2x21 合并同类项,得x21 解得x3 原方程的解为x3 上述解答过程中的错误步骤有 (填序号);请写出正确的解答过程19(5分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3

6、名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率20(8分)计算:2tan45-(-)-21(10分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行

7、速度;(3)求乙比甲早几分钟到达终点?22(10分)我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整)请根据图中信息,解答下列问题:此次共调查了 名学生;扇形统计图中D所在扇形的圆心角为 ;将上面的条形统计图补充完整;若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数23(12分)如图,已知在O中,AB是O的直径,AC8,BC1求O的面积;若D为O上一点,且ABD为等腰三角形,求CD的长24(14分)某校数学

8、综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:本次调查人数共 人,使用过共享单车的有 人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在24千米的有多少人?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是

9、,所以,第9行从左至右第5个数是=. 故选B【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力2、A【解析】由题意根据勾股定理求出OA,进而根据正弦的定义进行分析解答即可【详解】解:由题意得,由勾股定理得,故选:A【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边3、C【解析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为20176=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次

10、时的横坐标为8,纵坐标为,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题【详解】解:正六边形ABCDEF一共有6条边,即6次一循环;20176=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,点F滚动2107次时的纵坐标与相同,横坐标的次数加1,点F滚动2107次时的横坐标为2017+1=2018,纵坐标为,点F滚动2107次时的坐标为(2018,),故选C【点睛】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型4、A【解析】先求出每个不等式的解集,再根据不等式组解集的求法和不等

11、式组无解的条件,即可得到m的取值范围【详解】由得,xm,由得,x1,又因为不等式组无解,所以m1故选A【点睛】此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了5、C【解析】由ABC与DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案【详解】ABC与DEF相似,相似比为2:3,这两个三角形的面积比为4:1故选C【点睛】此题考查了相似三角形的性质注意相似三角形的面积比等于相似比的平方6、D【解析】试题分析:连结OA,如图,ABx轴,OCAB,SOAB=SCAB=3,而SOAB=|k|,|k|=3,k0,k=1故选D考

12、点:反比例函数系数k的几何意义7、B【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算详解:A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、-2a(a+3)=-2a2-6a,故本选项错误;D、(2a-b)2=4a2-4ab+b2,故本选项错误;故选:B点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键8、B【解析】将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出CME为等边三角形,进而即可得出AEC的值【详解

13、】将圆补充完整,找出点E的位置,如图所示弧AD所对的圆周角为ACD、AEC,图中所标点E符合题意四边形CMEN为菱形,且CME=60,CME为等边三角形,AEC=60故选B.【点睛】本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键9、B【解析】根据一个角是90度的平行四边形是矩形进行选择即可【详解】解:A、是邻边相等,可判定平行四边形ABCD是菱形;B、是一内角等于90,可判断平行四边形ABCD成为矩形;C、是对角线互相垂直,可判定平行四边形ABCD是菱形;D、是对角线平分对角,可判断平行四边形ABCD成为菱形;故选:B【点睛】本题主要应用

14、的知识点为:矩形的判定 对角线相等且相互平分的四边形为矩形一个角是90度的平行四边形是矩形10、A【解析】根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案【详解】解:由ABBC,垂足为B,AB=3.5,点P是射线BC上的动点,得APAB,AP3.5,故选:A【点睛】本题考查垂线段最短的性质,解题关键是利用垂线段的性质二、填空题(共7小题,每小题3分,满分21分)11、1【解析】去括号后得到答案.【详解】原式211,故答案为1.【点睛】本题主要考查了去括号的概念,解本题的要点在于二次根式的运算.12、y(2x+3y)(2x-3y)【解析】直接提取公因式y,再利用平方差公式分解因式即可

15、【详解】4x2y9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键13、13【解析】根据同时同地物高与影长成比列式计算即可得解【详解】解:设旗杆高度为x米,由题意得,,解得x=13.故答案为13.【点睛】本题考查投影,解题的关键是应用相似三角形.14、【解析】两边同时乘,得到整式方程,解整式方程后进行检验即可.【详解】解:两边同时乘,得,解得,检验:当时,0,所以x=1是原分式方程的根,故答案为:x=1.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.15、90【解析】【分

16、析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B地,设乙车出故障前走了t1小时,修好后走了t2小时,根据等量关系甲车用了小时行驶了全程,乙车行驶的路程为60t1+50t2=240,列方程组求出t2,再根据甲车的速度即可知乙车修好时甲车距B地的路程.【详解】甲车先行40分钟(),所行路程为30千米,因此甲车的速度为(千米/时),设乙车的初始速度为V乙,则有,解得:(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t1小时,修好后

17、走了t2小时,则有,解得:,452=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.16、或或1【解析】如图所示:当AP=AE=1时,BAD=90,AEP是等腰直角三角形,底边PE=AE=;当PE=AE=1时,BE=ABAE=81=3,B=90,PB=4,底边AP=;当PA=PE时,底边AE=1;综上所述:等腰三角形AEP的对边长为或或1;故答案为或或117、1【解析】根据立体图形画出它的主视图,再求出面积即可【详解】主视图如图所示,主视图是由1个棱长均为1的正方体组成的几何体,主视图的面积为112=1.

18、故答案为:1【点睛】本题是简单组合体的三视图,主要考查了立体图的左视图,解本题的关键是画出它的左视图三、解答题(共7小题,满分69分)18、(1)错误步骤在第步(2)x4.【解析】(1)第步在去分母的时候,两边同乘以6,但是方程右边没有乘,另外在去括号时没有注意到符号的变化,所以出现错误;(2)注重改正错误,按以上步骤进行即可【详解】解:(1)方程两边同乘6,得3x2(x1)6 去括号,得3x2x+26 错误步骤在第步(2)方程两边同乘6,得3x2(x1)6去括号,得3x2x+26合并同类项,得x+26解得x4原方程的解为x4【点睛】本题考查的解一元一次方程,注意去分母与去括号中常见错误,符号

19、也经常是出现错误的原因19、解:(1)该校班级个数为420%=20(个),只有2名留守儿童的班级个数为:20(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为:=4(名),补图如下:(2)由(1)得只有2名留守儿童的班级有2个,共4名学生设A1,A2来自一个班,B1,B2来自一个班,有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:=【解析】(1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;(2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自

20、同一个班级的概率.20、2-【解析】先求三角函数,再根据实数混合运算法计算.【详解】解:原式=21-1-=1+1-=2-【点睛】此题重点考察学生对三角函数值的应用,掌握特殊角的三角函数值是解题的关键.21、(1);(2)80米/分;(3)6分钟【解析】(1)根据图示,设线段AB的表达式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,(2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程时间,计算求值即可,(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达

21、终点甲和乙所用的时间,二者的时间差即可所求答案【详解】(1)根据题意得:设线段AB的表达式为:y=kx+b (4x16),把(4,240),(16,0)代入得:,解得:,即线段AB的表达式为:y= -20x+320 (4x16),(2)又线段OA可知:甲的速度为:=60(米/分),乙的步行速度为:=80(米/分),答:乙的步行速度为80米/分,(3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)60=960(米),与终点的距离为:2400-960=1440(米),相遇后,到达终点甲所用的时间为:=24(分),相遇后,到达终点乙所用的时间为:=18(分),24-18=6(分),答:乙比

22、甲早6分钟到达终点【点睛】本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键22、(1)120;(2)54;(3)详见解析(4)1【解析】(1)根据B的人数除以占的百分比即可得到总人数;(2)先根据题意列出算式,再求出即可;(3)先求出对应的人数,再画出即可;(4)先列出算式,再求出即可【详解】(1)(25+23)40%=120(名),即此次共调查了120名学生,故答案为120;(2)360=54,即扇形统计图中D所在扇形的圆心角为54,故答案为54;(3)如图所示:;(4)800=1(人),答:估计对食品安全知识“非常了解”的学生的人数是1人【点睛】本题考查了条形统计图、扇形统计图,

23、总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键23、(1)25;(2)CD1,CD27【解析】分析:(1)利用圆周角定理的推论得到C是直角,利用勾股定理求出直径AB,再利用圆的面积公式即可得到答案;(2)分点D在上半圆中点与点D在下半圆中点这两种情况进行计算即可.详解:(1)AB是O的直径,ACB=90,AB是O的直径,AC8,BC1,AB10,O的面积5225(2)有两种情况:如图所示,当点D位于上半圆中点D1时,可知ABD1是等腰直角三角形,且OD1AB,作CEAB垂足为E,CFOD1垂足为F,可得矩形CEOF,CE,OF= CE=,=,,;如图所示,当点D位于下

24、半圆中点D2时,同理可求.CD1,CD27点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.24、(1)200,90 (2)图形见解析(3)750人【解析】试题分析:(1)用对于共享单车不了解的人数20除以对于共享单车不了解的人数所占得百分比即可得本次调查人数;用总人数乘以使用过共享单车人数所占的百分比即可得使用过共享单车的人数;(2)用使用过共享单车的总人数减去02,46,68的人数,即可得24的人数,再图上画出即可;(3)用3000乘以骑行路程在24千米的人数所占的百分比即可得每天的骑行路程在24千米的人数.试题解析:(1)2010%=200,200(1-45%-10%)=90 ; (2)90-25-10-5=50,补全条形统计图 (3)=750(人) 答: 每天的骑行路程在24千米的大约750人

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁