2022-2023学年广东省阳东广雅学校高三3月份模拟考试数学试题含解析.doc

上传人:茅**** 文档编号:87797524 上传时间:2023-04-17 格式:DOC 页数:23 大小:2.60MB
返回 下载 相关 举报
2022-2023学年广东省阳东广雅学校高三3月份模拟考试数学试题含解析.doc_第1页
第1页 / 共23页
2022-2023学年广东省阳东广雅学校高三3月份模拟考试数学试题含解析.doc_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《2022-2023学年广东省阳东广雅学校高三3月份模拟考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省阳东广雅学校高三3月份模拟考试数学试题含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数z满足,则在复平面上对应的点在( )A第一象限B第二象限C第三象限D第四象限2如图在直角坐标系中,过原点作曲线的切线,切点为,过点分别作、轴的垂线,垂足分别为、,在矩形中随机选取一点,则它在阴影部分的概率为( )ABCD3一个超级斐波那

2、契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16).则首项为2,某一项为2020的超级斐波那契数列的个数为( )A3B4C5D64在中,为的外心,若,则( )ABCD5已知函数若函数在上零点最多,则实数的取值范围是( )ABCD6设函数恰有两个极值点,则实数的取值范围是( )ABCD7在中,分别为,的中点,为上的任一点,实数,满足,设、的面积分别为、,记(),则取到最大值时,的值为( )A1B1CD8如图网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为( )ABCD9易经包含着很多哲理,在信息学、天文

3、学中都有广泛的应用,易经的博大精深,对今天 的几何学和其它学科仍有深刻的影响下图就是易经中记载的几何图形八卦田,图中正八 边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田已知正八边 形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为( )ABCD10已知集合,则( )ABCD11已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为( )AB16CD12下列函数中,值域为的偶函数是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设变量,满足约束条件,则目标函数的最小值是_.14函数的最大值与最小正周期相同,则在上的单调

4、递增区间为_.15已知抛物线的对称轴与准线的交点为,直线与交于,两点,若,则实数_16已知双曲线的两条渐近线方程为,若顶点到渐近线的距离为1,则双曲线方程为 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线和圆,倾斜角为45的直线过抛物线的焦点,且与圆相切(1)求的值;(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设求证点在定直线上,并求该定直线的方程18(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:组别

5、男235151812女051010713 (1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?(2)若问卷得分不低于80分的人称为“环保达人”视频率为概率在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动每次抽奖获得红包的金额和对应的概率.如下表:红包金额(单位:元)1020概率现某市民要参加此次问卷调查,记(单位:元)

6、为该市民参加间卷调查获得的红包金额,求的分布列及数学期望附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819(12分)已知椭圆:()的左、右焦点分别为和,右顶点为,且,短轴长为.(1)求椭圆的方程;(2)若过点作垂直轴的直线,点为直线上纵坐标不为零的任意一点,过作的垂线交椭圆于点和,当时,求此时四边形的面积.20(12分)设函数.(1)求的值;(2)若,求函数的单调递减区间.21(12分)设数阵,其中、设,其中,且定义变换为“对于数阵的每一行,若其中有或,则将这一行中每个数都乘以;若其中没有且没

7、有,则这一行中所有数均保持不变”(、)表示“将经过变换得到,再将经过变换得到、 ,以此类推,最后将经过变换得到”,记数阵中四个数的和为(1)若,写出经过变换后得到的数阵;(2)若,求的值;(3)对任意确定的一个数阵,证明:的所有可能取值的和不超过22(10分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:等级不合格合格得分频数624()若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上

8、的把握认为性别与安全意识有关? 是否合格 性别 不合格合格总计男生女生总计()用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;()某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在()的条件下,判断该校是否应调整安全教育方案?附表及公式:,其中.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设,由得:,由复数相等可得的值,进而求出,即可得

9、解.【详解】设,由得:,即,由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.故选:A.【点睛】本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题.2、A【解析】设所求切线的方程为,联立,消去得出关于的方程,可得出,求出的值,进而求得切点的坐标,利用定积分求出阴影部分区域的面积,然后利用几何概型概率公式可求得所求事件的概率.【详解】设所求切线的方程为,则,联立,消去得,由,解得,方程为,解得,则点,所以,阴影部分区域的面积为,矩形的面积为,因此,所求概率为.故选:A.【点睛】本题考查定积分的计算以及几何概型,同时也涉及了二

10、次函数的切线方程的求解,考查计算能力,属于中等题.3、A【解析】根据定义,表示出数列的通项并等于2020.结合的正整数性质即可确定解的个数.【详解】由题意可知首项为2,设第二项为,则第三项为,第四项为,第五项为第n项为且,则,因为,当的值可以为;即有3个这种超级斐波那契数列,故选:A.【点睛】本题考查了数列新定义的应用,注意自变量的取值范围,对题意理解要准确,属于中档题.4、B【解析】首先根据题中条件和三角形中几何关系求出,即可求出的值.【详解】如图所示过做三角形三边的垂线,垂足分别为,过分别做,的平行线,由题知,则外接圆半径,因为,所以,又因为,所以,由题可知,所以,所以.故选:D.【点睛】

11、本题主要考查了三角形外心的性质,正弦定理,平面向量分解定理,属于一般题.5、D【解析】将函数的零点个数问题转化为函数与直线的交点的个数问题,画出函数的图象,易知直线过定点,故与在时的图象必有两个交点,故只需与在时的图象有两个交点,再与切线问题相结合,即可求解.【详解】由图知与有个公共点即可,即,当设切点,则,.故选:D.【点睛】本题考查了函数的零点个数的问题,曲线的切线问题,注意运用转化思想和数形结合思想,属于较难的压轴题.6、C【解析】恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.【详解】由题意

12、知函数的定义域为,.因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.故选:C【点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.7、D【解析】根据三角形中位线的性质,可得到的距离等于的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果.【详解】如图所示:因为是的中位线,所以到的距离等于的边上高的一半,所以,由此可得,当且仅当时,即为的中

13、点时,等号成立,所以,由平行四边形法则可得,将以上两式相加可得,所以,又已知,根据平面向量基本定理可得,从而.故选:D【点睛】本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.8、C【解析】利用正方体将三视图还原,观察可得最长棱为AD,算出长度.【详解】几何体的直观图如图所示,易得最长的棱长为故选:C.【点睛】本题考查了三视图还原几何体的问题,其中利用正方体作衬托是关键,属于基础题.9、B【解析】由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【详解】由图,正八边形分割成个等腰三角形,顶角为,设三

14、角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B【点睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.10、D【解析】根据集合的基本运算即可求解.【详解】解:,则故选:D.【点睛】本题主要考查集合的基本运算,属于基础题11、C【解析】根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.【详解】由于平面平面,且交线为,所以平面,平面.所以和分别是直线与平面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,设(点在第一象限内),由得,即,化简得,由于点在第一

15、象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.故选:C【点睛】本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.12、C【解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C考点:1、函数的奇偶性;2、函数的值域二、填空题:本题共4小题,每小题5分,共20分。13、7【解析】作出不等式组表示的平面区域,得到如图的ABC及其内部,其中A(2,1

16、),B(1,2),C(4,5)设z=F(x,y)=2x+3y,将直线l:z=2x+3y进行平移,当l经过点A时,目标函数z达到最小值z最小值=F(2,1)=714、【解析】利用三角函数的辅助角公式进行化简,求出函数的解析式,结合三角函数的单调性进行求解即可【详解】,则函数的最大值为2,周期,的最大值与最小正周期相同,得,则,当时,则当时,得,即函数在,上的单调递增区间为,故答案为:.【点睛】本题考查三角函数的性质、单调区间,利用辅助角公式求出函数的解析式是解决本题的关键,同时要注意单调区间为定义域的一个子区间15、【解析】由于直线过抛物线的焦点,因此过,分别作的准线的垂线,垂足分别为,由抛物线

17、的定义及平行线性质可得,从而再由抛物线定义可求得直线倾斜角的余弦,再求得正切即为直线斜率注意对称性,问题应该有两解【详解】直线过抛物线的焦点,过,分别作的准线的垂线,垂足分别为,由抛物线的定义知,因为,所以因为,所以,从而设直线的倾斜角为,不妨设,如图,则,同理,则,解得,由对称性还有满足题意,综上,【点睛】本题考查抛物线的性质,考查抛物线的焦点弦问题,掌握抛物线的定义,把抛物线上点到焦点距离与它到距离联系起来是解题关键16、【解析】由已知,即,取双曲线顶点及渐近线,则顶点到该渐近线的距离为,由题可知,所以,则所求双曲线方程为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17

18、、(1);(2)点在定直线上【解析】(1)设出直线的方程为,由直线和圆相切的条件:,解得;(2)设出,运用导数求得切线的斜率,求得为切点的切线方程,再由向量的坐标表示,可得在定直线上;【详解】解:(1)依题意设直线的方程为,由已知得:圆的圆心,半径,因为直线与圆相切,所以圆心到直线的距离,即,解得或(舍去)所以;(2)依题意设,由(1)知抛物线方程为,所以,所以,设,则以为切点的切线的斜率为,所以切线的方程为令,即交轴于点坐标为,所以, ,设点坐标为,则,所以点在定直线上【点睛】本题考查抛物线的方程和性质,直线与圆的位置关系的判断,考查直线方程和圆方程的运用,以及切线方程的求法,考查化简整理的

19、运算能力,属于综合题18、 (1)不能;(2) ;分布列见解析,.【解析】(1)根据题目所给的数据可求22列联表即可;计算K的观测值K2,对照题目中的表格,得出统计结论(2)由相互独立事件的概率可得男“环保达人”又有女“环保达人”的概率:P1()3()3,解出X的分布列及数学期望E(X)即可;【详解】(1)由图中表格可得列联表如下:非“环保关注者”是“环保关注者”合计男104555女153045合计2575100将列联表中的数据代入公式计算得K”的观测值,所以在犯错误的概率不超过0. 05的前提下,不能认为是否为“环保关注者”与性别有关. (2)视频率为概率,用户为男“环保达人”的概率为.为女

20、“环保达人”的概率为,抽取的3名用户中既有男“环保达人”又有女“环保达人”的概率为;的取值为10,20,30,40.,所以的分布列为10203040 .【点睛】本题考查了独立性检验的应用问题,考查了概率分布列和期望,计算能力的应用问题,是中档题目19、(1)(2)【解析】(1)依题意可得,解方程组即可求出椭圆的方程;(2)设,则,设直线的方程为,联立直线与椭圆方程,消去,设,列出韦达定理,即可表示,再根据求出参数,从而得出,最后由点到直线的距离得到,由即可得解;【详解】解:(1),解得,椭圆的方程为.(2),可设,.,设直线的方程为,显然恒成立.设,则,.,解得,解得,.此时直线的方程为,点到

21、直线的距离为,即此时四边形的面积为.【点睛】本题考查椭圆的标准方程及简单几何性质,直线与椭圆的综合应用,考查计算能力,属于中档题20、(1)(2)的递减区间为和【解析】(1)化简函数,代入,计算即可;(2)先利用正弦函数的图象与性质求出函数的单调递减区间,再结合即可求出.【详解】(1),从而.(2)令.解得.即函数的所有减区间为,考虑到,取,可得,故的递减区间为和.【点睛】本题主要考查了三角函数的恒等变形,正弦函数的图象与性质,属于中档题.21、(1);(2);(3)见解析.【解析】(1)由,能求出经过变换后得到的数阵;(2)由,求出数阵经过变化后的矩阵,进而可求得的值;(3)分和两种情况讨论

22、,推导出变换后数阵的第一行和第二行的数字之和,由此能证明的所有可能取值的和不超过【详解】(1),经过变换后得到的数阵;(2)经变换后得,故;(3)若,在的所有非空子集中,含有且不含的子集共个,经过变换后第一行均变为、;含有且不含的子集共个,经过变换后第一行均变为、;同时含有和的子集共个,经过变换后第一行仍为、;不含也不含的子集共个,经过变换后第一行仍为、所以经过变换后所有的第一行的所有数的和为.若,则的所有非空子集中,含有的子集共个,经过变换后第一行均变为、;不含有的子集共个,经过变换后第一行仍为、所以经过变换后所有的第一行的所有数的和为同理,经过变换后所有的第二行的所有数的和为所以的所有可能

23、取值的和为,又因为、,所以的所有可能取值的和不超过【点睛】本题考查数阵变换的求法,考查数阵中四个数的和不超过的证明,考查类比推理、数阵变换等基础知识,考查运算求解能力,综合性强,难度大22、()详见解析;()详见解析;()不需要调整安全教育方案.【解析】(I)根据题目所给数据填写好列联表,计算出的值,由此判断出在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.(II)利用超几何分布的计算公式,计算出的分布列并求得数学期望.(III)由(II)中数据,计算出,进而求得的值,从而得出该校的安全教育活动是有效的,不需要调整安全教育方案.【详解】解:()由频率分布直方图可知,得分在的频率为,故抽取的学生答卷总数为,.性别与合格情况的列联表为: 是否合格 性别 不合格合格小计男生女生小计即在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.()“不合格”和“合格”的人数比例为,因此抽取的人中“不合格”有人,“合格”有人,所以可能的取值为, .的分布列为:20151050所以. ()由()知: .故我们认为该校的安全教育活动是有效的,不需要调整安全教育方案.【点睛】本小题主要考查列联表独立性检验,考查超几何分布的分布列、数学期望和方差的计算,所以中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁