《2022-2023学年贵州省贵州铜仁伟才校中考数学模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年贵州省贵州铜仁伟才校中考数学模试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )ABCD2一次函数y=2x+1的图像不经过 ( )A第一象限 B第二象限 C第三象限 D第四象限3下列图
2、形中一定是相似形的是( )A两个菱形B两个等边三角形C两个矩形D两个直角三角形4如图,已知直线AB、CD被直线AC所截,ABCD,E是平面内任意一点(点E不在直线AB、CD、AC上),设BAE=,DCE=下列各式:+,360,AEC的度数可能是()ABCD5已知矩形ABCD中,AB3,BC4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2()A6BC12D126下列计算正确的有( )个(2a2)36a6 (x2)(x+3)x26 (x2)2x24 2m3+m3m3 161A0B1C2D37在函数y中,自变量x的取值
3、范围是( )Ax1Bx1且x0Cx0且x1Dx0且x18如图所示的图形为四位同学画的数轴,其中正确的是( )ABCD9已知实数a0,则下列事件中是必然事件的是()Aa+30Ba30C3a0Da3010下列运算结果正确的是()A(x3x2+x)x=x2x B(a2)a3=a6 C(2x2)3=8x6 D4a2(2a)2=2a2二、填空题(本大题共6个小题,每小题3分,共18分)11新定义a,b为一次函数(其中a0,且a,b为实数)的“关联数”,若“关联数”3,m+2所对应的一次函数是正比例函数,则关于x的方程的解为 12填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是 13抛
4、物线y2x2+3x+k2经过点(1,0),那么k_14函数中,自变量的取值范围是_15据媒体报道,我国研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,将204000这个数用科学记数法表示为_16如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_个三、解答题(共8题,共72分)17(8分)某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:销售价格元千克2410市场需求量百千克12104已知按物价
5、部门规定销售价格x不低于2元千克且不高于10元千克求q与x的函数关系式;当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克求厂家获得的利润百元与销售价格x的函数关系式;当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本18(8分)解方程:19(8分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两
6、幅如图所示的统计图请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为 ,图中的a的值为 ;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数20(8分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈起跳,第一次掷得,就顺时针连续跳个边长,落在圈;若第二次掷得,就从圈开始顺时针连续跳个边长,落得圈;设游戏者从圈起跳.小贤随机掷一次骰子,求落回到圈的概率.小南随机掷两次骰子,用列表法求最后落回到圈的概率,并指出他与小贤落回
7、到圈的可能性一样吗?21(8分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(,0)(1)求抛物线F的解析式;(1)如图1,直线l:y=x+m(m0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1y1的值(用含m的式子表示);(3)在(1)中,若m=,设点A是点A关于原点O的对称点,如图1判断AAB的形状,并说明理由;平面内是否存在点P,使得以点A、B、A、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由22(10分)(阅读)如图1,在等腰ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰
8、AB、AC的距离分别为h1,h1连接AM (思考)在上述问题中,h1,h1与h的数量关系为: (探究)如图1,当点M在BC延长线上时,h1、h1、h之间有怎样的数量关系式?并说明理由(应用)如图3,在平面直角坐标系中有两条直线l1:,l1:y=3x+3,若l1上的一点M到l1的距离是1,请运用上述结论求出点M的坐标23(12分)如图,AB是O的直径,C、D为O上两点,且,过点O作OEAC于点EO的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.(1)求证:FB;(2)若AB12,BG10,求AF的长.24我们知道中,如果,那么当时,的面积最大为6;(1)若四边形中,且,直接写出满足
9、什么位置关系时四边形面积最大?并直接写出最大面积.(2)已知四边形中,求为多少时,四边形面积最大?并求出最大面积是多少?参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,可以列出方程:故选D2、D【解析】根据一次函数的系数判断出函数图象所经过的象限,由k=20,b=10可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】k=20,b=10,根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经
10、过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.3、B【解析】如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形【详解】解:等边三角形的对应角相等,对应边的比相等,两个等边三角形一定是相似形,又直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B【点睛】本题考查了相似多边形的识别判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备4、D【解析】根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解
11、】E点有4中情况,分四种情况讨论如下:由ABCD,可得AOC=DCE1=AOC=BAE1+AE1C,AE1C=-过点E2作AB的平行线,由ABCD,可得1=BAE2=,2=DCE2=AE2C=+由ABCD,可得BOE3=DCE3=BAE3=BOE3+AE3C,AE3C=-由ABCD,可得BAE4+AE4C+DCE4=360,AE4C=360-AEC的度数可能是+,-,360,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.5、D【解析】根据题意可得到CE=2,然后根据S1S2 =S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【详解】解:BC4,E为
12、BC的中点,CE2,S1S234 ,故选D【点睛】此题考查扇形面积的计算,矩形的性质及面积的计算.6、C【解析】根据积的乘方法则,多项式乘多项式的计算法则,完全平方公式,合并同类项的计算法则,乘方的定义计算即可求解【详解】(2a2)3=8a6,错误;(x2)(x+3)=x2+x6,错误;(x2)2=x24x+4,错误2m3+m3=m3,正确;16=1,正确计算正确的有2个故选C【点睛】考查了积的乘方,多项式乘多项式,完全平方公式,合并同类项,乘方,关键是熟练掌握计算法则正确进行计算7、C【解析】根据分式和二次根式有意义的条件进行计算即可【详解】由题意得:x2且x22解得:x2且x2故x的取值范
13、围是x2且x2故选C【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键8、D【解析】根据数轴三要素:原点、正方向、单位长度进行判断.【详解】A选项图中无原点,故错误;B选项图中单位长度不统一,故错误;C选项图中无正方向,故错误;D选项图形包含数轴三要素,故正确;故选D.【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.9、B【解析】A、a+30是随机事件,故A错误;B、a30是必然事件,故B正确;C、3a0是不可能事件,故C错误;D、a30是随机事件,故D错误;故选B点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必
14、然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、C【解析】根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得【详解】A、(x3-x2+x)x=x2-x+1,此选项计算错误;B、(-a2)a3=-a5,此选项计算错误;C、(-2x2)3=-8x6,此选项计算正确;D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.故选:C【点睛】本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则二、填空题(
15、本大题共6个小题,每小题3分,共18分)11、.【解析】试题分析:根据“关联数”3,m+2所对应的一次函数是正比例函数,得到y=3x+m+2为正比例函数,即m+2=0,解得:m=-2,则分式方程为,去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=,经检验x=是分式方程的解考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义12、2【解析】试题分析:分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数因此,图中阴影部分的两个数分别是左下是12,右上是1解:分析可得图中阴影部分的两个数分别是左下是1
16、2,右上是1,则m=12110=2故答案为2考点:规律型:数字的变化类13、3.【解析】试题解析:把(-1,0)代入得:2-3+k-2=0,解得:k=3.故答案为3.14、【解析】根据分式有意义的条件是分母不为2;分析原函数式可得关系式x12,解得答案【详解】根据题意得x12,解得:x1;故答案为:x1【点睛】本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为215、2.041【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是非负数;当
17、原数的绝对值1时,n是负数【详解】解:204000用科学记数法表示2.041故答案为2.041点睛:本题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值16、7【解析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特
18、性是解题关键.三、解答题(共8题,共72分)17、(1) ;(2);(3);当时,厂家获得的利润y随销售价格x的上涨而增加【解析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)由题意可得:pq,进而得出x的取值范围;(3)利用顶点式求出函数最值得出答案;利用二次函数的增减性得出答案即可【详解】(1)设q=kx+b(k,b为常数且k0),当x=2时,q=12,当x=4时,q=10,代入解析式得:,解得:,q与x的函数关系式为:q=x+14;(2)当产量小于或等于市场需求量时,有pq,x+8x+14,解得:x4,又2x10,2x4;(3)当产量大于市场需求量时,可得4x10,由题意
19、得:厂家获得的利润是:y=qx2p=x2+13x16=(x)2;当x时,y随x的增加而增加又产量大于市场需求量时,有4x10,当4x时,厂家获得的利润y随销售价格x的上涨而增加【点睛】本题考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题的关键18、x=,x=2【解析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】,则2x(x+1)=3(1x),2x2+5x3=0,(2x1)(x+3)=0,解得:x1=,x2=3,检验:当x=,x=2时,2(x+1)(1x)均不等于0,故x=,x=2都是原方程的解【点睛】本题考查解分式方程的能力(1)解分式
20、方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化19、(1)50、2;(2)平均数是7.11;众数是1;中位数是1【解析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得【详解】(1)本次抽查测试的学生人数为1421%=50人,a%=100%=2%,即a=2故答案为50、2;(2)观察条形统计图,平均数为=7.11在这组数据中,1出现了20次,出现的次数最多,这组数据的众数是1将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,=1,这组数据的
21、中位数是1【点睛】本题考查了众数、平均数和中位数的定义用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数平均数是指在一组数据中所有数据之和再除以数据的个数20、(1)落回到圈的概率;(2)可能性不一样.【解析】(1)由共有6种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案
22、【详解】(1)掷一次骰子有种等可能的结果,只有掷的时,才会落回到圈,落回到圈的概率;(2)列表得:123456123456共有种等可能的结果,当两次掷得的数字之和为的倍数,即时,才可能落回到圈,这种情况共有种,,可能性不一样【点睛】本题考查了用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比21、(1)y=x1+x;(1)y1y1=;(3)AAB为等边三角形,理由见解析;平面内存在点P,使得以点A、B、A、P为顶点的四边形是菱形,点P的坐标为(1,)、( )和(,1)【解
23、析】(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;(1)将直线l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1-y1的值;(3)根据m的值可得出点A、B的坐标,利用对称性求出点A的坐标利用两点间的距离公式(勾股定理)可求出AB、AA、AB的值,由三者相等即可得出AAB为等边三角形;根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线
24、互相平分)可求出点P的坐标;(iii)当AA为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标综上即可得出结论【详解】(1)抛物线y=x1+bx+c的图象经过点(0,0)和(,0),解得:,抛物线F的解析式为y=x1+x(1)将y=x+m代入y=x1+x,得:x1=m,解得:x1=,x1=,y1=+m,y1=+m,y1y1=(+m)(+m)=(m0)(3)m=,点A的坐标为(,),点B的坐标为(,1)点A是点A关于原点O的对称点,点A的坐标为(,)AAB为等边三角形,理由如下:A(,),B(,1),A(,),AA=,AB=,AB=,AA=AB=AB,AAB为等边三角形AAB为等边三角
25、形,存在符合题意的点P,且以点A、B、A、P为顶点的菱形分三种情况,设点P的坐标为(x,y)(i)当AB为对角线时,有,解得,点P的坐标为(1,);(ii)当AB为对角线时,有,解得:,点P的坐标为(,);(iii)当AA为对角线时,有,解得:,点P的坐标为(,1)综上所述:平面内存在点P,使得以点A、B、A、P为顶点的四边形是菱形,点P的坐标为(1,)、( )和(,1)【点睛】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(1)将一次函数解析式代入二次函数解析式
26、中求出x1、x1的值;(3)利用勾股定理(两点间的距离公式)求出AB、AA、AB的值;分AB为对角线、AB为对角线及AA为对角线三种情况求出点P的坐标22、【思考】h1+h1=h;【探究】h1h1=h理由见解析;【应用】所求点M的坐标为(,1)或(,4)【解析】思考:根据等腰三角形的性质,把代数式化简可得.探究:当点M在BC延长线上时,连接,可得,化简可得.应用:先证明,ABC为等腰三角形,即可运用上面得到的性质,再分点M在BC边上和在CB延长线上两种情况讨论,第一种有1+My=OB,第二种为My1=OB,解得的纵坐标,再分别代入的解析式即可求解.【详解】思考即h1+h1=h探究h1h1=h
27、理由连接, h1h1=h 应用在中,令x=0得y=3;令y=0得x=4,则:A(4,0),B(0,3) 同理求得C(1,0),又因为AC=5,所以AB=AC,即ABC为等腰三角形当点M在BC边上时,由h1+h1=h得:1+My=OB,My=31=1,把它代入y=3x+3中求得:,; 当点M在CB延长线上时,由h1h1=h得:My1=OB,My=3+1=4,把它代入y=3x+3中求得:,综上,所求点M的坐标为或【点睛】本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.23、(1)见解析;(2).【解析】(1)根据圆周角定理得到GA
28、BB,根据切线的性质得到GAB+GAF90,证明FGAB,等量代换即可证明;(2)连接OG,根据勾股定理求出OG,证明FAOBOG,根据相似三角形的性质列出比例式,计算即可.【详解】(1)证明:,.GABB,AF是O的切线,AFAO.GAB+GAF90.OEAC,F+GAF90.FGAB,FB;(2)解:连接OG.GABB,AGBG.OAOB6,OGAB.,FAOBOG90,FB,FAOBOG,.【点睛】本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.24、 (1)当,时有最大值1;(2)当时,面积有最大值32.【解析】(1)由题意当ADBC,BDAD时,四边形ABCD的面积最大,由此即可解决问题(2)设BD=x,由题意:当ADBC,BDAD时,四边形ABCD的面积最大,构建二次函数,利用二次函数的性质即可解决问题【详解】(1) 由题意当ADBC,BDAD时,四边形ABCD的面积最大,最大面积为6(16-6)=1故当,时有最大值1;(2)当,时有最大值,设, 由题意:当ADBC,BDAD时,四边形ABCD的面积最大,抛物线开口向下当 时,面积有最大值32.【点睛】本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题