《2022-2023学年湖北省潜江市积玉口镇中学中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年湖北省潜江市积玉口镇中学中考猜题数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1二次函数y=ax2+bx+c(a0)的图象如图,下列四个结论:4a+c0;m(am+b)+ba(m1);关于x的一元二次方程ax2+(b1)x+c=0没有实数根;ak4+bk2a
2、(k2+1)2+b(k2+1)(k为常数)其中正确结论的个数是()A4个B3个C2个D1个2已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )ABCD3如图所示,点E是正方形ABCD内一点,把BEC绕点C旋转至DFC位置,则EFC的度数是( )A90B30C45D6042018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力数字7600用科学记数法表示为()A0.76104B7.6103C7.6104D761025函数的自变量x的取值范围是( )Ax1Bx1Cx1Dx1
3、6通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )A10.7104B1.07105C1.7104D1.071047将抛物线y=x26x+21向左平移2个单位后,得到新抛物线的解析式为()Ay=(x8)2+5By=(x4)2+5Cy=(x8)2+3Dy=(x4)2+38在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是()A中位数不变,方差不变B中位数变大,方差不变C中位数变小,方差变小D中位数不变,方差变小9空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为( )A0.12
4、9102B1.29102C1.29103D12.910110如图,是的直径,弦,则阴影部分的面积为( )A2BCD11已知关于x的一元二次方程x2+mx+n0的两个实数根分别为x12,x24,则m+n的值是()A10B10C6D212如图1,在矩形ABCD中,动点E从A出发,沿ABC方向运动,当点E到达点C时停止运动,过点E作EFAE交CD于点F,设点E运动路程为x,CFy,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:a3;当CF时,点E的运动路程为或或,则下列判断正确的是( )A都对B都错C对错D错对二、填空题:(本大题共6个小题,每小题4分,共24分)13若关于的一元二次方程
5、有实数根,则的取值范围是_14对于实数a,b,我们定义符号maxa,b的意义为:当ab时,maxa,ba;当ab时,maxa,bb;如:max4,24,max3,33,若关于x的函数为ymaxx+3,x+1,则该函数的最小值是_15如图,在平面直角坐标系中,的顶点、在坐标轴上,点的坐标是(2,2)将ABC沿轴向左平移得到A1B1C1,点落在函数y=-如果此时四边形的面积等于,那么点的坐标是_16如图所示,在ABC中,C=90,CAB=50.按以下步骤作图:以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点G;作射线AG交
6、BC边于点D则ADC的度数为.17如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若OEC的面积为12,则k=_18分解因式:x24x+4=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去(1)用树状图或列表法求出小王去的概
7、率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由20(6分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值21(6分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作O交AB于点D,交AC于点G,直线DF是O的切线,D为切点,交CB的延长线于点E(1)求证:DFAC;(2)求tanE的值22(8分)如图,分别以线段AB两端点A,B为圆心,以大于AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DEAB,BECD(1)判断四边形ACBD的形状,并说明理由;(2)求证:ME=AD23(8分)已知二次函数y=x2-4x-5,与y轴的交点为P
8、,与x轴交于A、B两点(点B在点A的右侧)(1)当y=0时,求x的值(2)点M(6,m)在二次函数y=x2-4x-5的图像上,设直线MP与x轴交于点C,求cotMCB的值24(10分)解方程组 25(10分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为米,斜坡BC的坡度i=1:小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45,旗杆底部B的仰角为20(1)求坡角BCD;(2)求旗杆AB的高度(参考数值:sin200.34,cos200.94,tan200.36)26(12分)先化简,再求值:(x2),其中x=27(12分)如
9、图,已知AD是的中线,M是AD的中点,过A点作,CM的延长线与AE相交于点E,与AB相交于点F.(1)求证:四边形是平行四边形;(2)如果,求证四边形是矩形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】因为二次函数的对称轴是直线x=1,由图象可得左交点的横坐标大于3,小于2,所以=1,可得b=2a,当x=3时,y0,即9a3b+c0,9a6a+c0,3a+c0,a0,4a+c0,所以选项结论正确;抛物线的对称轴是直线x=1,y=ab+c的值最大,即把x=m(m1)代入得:y=am2+bm+cab+c,am2+bm
10、ab,m(am+b)+ba,所以此选项结论不正确;ax2+(b1)x+c=0,=(b1)24ac,a0,c0,ac0,4ac0,(b1)20,0,关于x的一元二次方程ax2+(b1)x+c=0有实数根;由图象得:当x1时,y随x的增大而减小,当k为常数时,0k2k2+1,当x=k2的值大于x=k2+1的函数值,即ak4+bk2+ca(k2+1)2+b(k2+1)+c,ak4+bk2a(k2+1)2+b(k2+1),所以此选项结论不正确;所以正确结论的个数是1个,故选D2、D【解析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的
11、取值范围,然后选择即可【详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,解不等式得,x2.5,解不等式的,x5,所以,不等式组的解集是2.5x5,正确反映y与x之间函数关系的图象是D选项图象故选:D3、C【解析】根据正方形的每一个角都是直角可得BCD=90,再根据旋转的性质求出ECF=BCD=90,CE=CF,然后求出CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答【详解】四边形ABCD是正方形,BCD=90,BEC绕点C旋转至DFC的位置,ECF=BCD=90,CE=CF,CEF是等腰直角三角形,EFC=45.故选:C.【点睛】本题目是一道考查旋转的性质
12、问题每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故 为等腰直角三角形.4、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】解:76007.6103,故选B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值5、C【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围试题解析:根据题意得:1-x
13、0,解得:x1故选C考点:函数自变量的取值范围6、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:10700=1.07104,故选:D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值7、D【解析】直接利用配方法将原式变形,进而利用平移规律得出答案【详解】y=x26x+21=(x212x)+21=(x6)216+21=(x6)2+
14、1,故y=(x6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=(x4)2+1故选D【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键8、D【解析】根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断【详解】原数据的中位数是=3,平均数为=3,方差为(1-3)2+(2-3)2+(4-3)2+(5-3)2=;新数据的中位数为3,平均数为=3,方差为(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2=2;所以新数据与原数据相比中位数不变,方差变小,故选:D【点睛】本题考查了中位数和方差,解题的关键是掌握中
15、位数和方差的定义9、C【解析】试题分析:0.00129这个数用科学记数法可表示为1.29101故选C考点:科学记数法表示较小的数10、D【解析】分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可详解:连接OD,CDAB, (垂径定理),故 即可得阴影部分的面积等于扇形OBD的面积,又 (圆周角定理),OC=2,故S扇形OBD= 即阴影部分的面积为.故选D.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.11、D【解析】根据“一元二次方程x2+mx+n0的两个实数根分别为x12,x24”,结合根与
16、系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案【详解】解:根据题意得:x1+x2m2+4,解得:m6,x1x2n24,解得:n8,m+n6+82,故选D【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键12、A【解析】由已知,AB=a,AB+BC=5,当E在BC上时,如图,可得ABEECF,继而根据相似三角形的性质可得y=,根据二次函数的性质可得,由此可得a=3,继而可得y=,把y=代入解方程可求得x1=,x2=,由此可求得当E在AB上时,y=时,x=,据此即可作出判断【详解】解:由已知,AB=a,AB+BC=5,当E在BC上时,如
17、图,E作EFAE,ABEECF,y=,当x=时,解得a1=3,a2=(舍去),y=,当y=时,=,解得x1=,x2=,当E在AB上时,y=时,x=3=,故正确,故选A【点睛】本题考查了二次函数的应用,相似三角形的判定与性质,综合性较强,弄清题意,正确画出符合条件的图形,熟练运用二次函数的性质以及相似三角形的判定与性质是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】由题意可得,=9-4m0,由此求得m的范围【详解】关于x的一元二次方程x2-3x+m=0有实数根,=9-4m0,求得 m.故答案为:【点睛】本题考核知识点:一元二次方程根判别式. 解题关键点:理解一元二
18、次方程根判别式的意义.14、2【解析】试题分析:当x+3x+1,即:x1时,y=x+3,当x=1时,ymin=2,当x+3x+1,即:x1时,y=x+1,x1,x1,x+12,y2,ymin=2,15、 (-5, )【解析】分析:依据点B的坐标是(2,2),BB2AA2,可得点B2的纵坐标为2,再根据点B2落在函数y=的图象上,即可得到BB2=AA2=5=CC2,依据四边形AA2C2C的面积等于,可得OC=,进而得到点C2的坐标是(5,)详解:如图,点B的坐标是(2,2),BB2AA2,点B2的纵坐标为2又点B2落在函数y=的图象上,当y=2时,x=3,BB2=AA2=5=CC2又四边形AA2
19、C2C的面积等于,AA2OC=,OC=,点C2的坐标是(5,) 故答案为(5,) 点睛:本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的性质在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度16、65【解析】根据已知条件中的作图步骤知,AG是CAB的平分线,根据角平分线的性质解答即可【详解】根据已知条件中的作图步骤知,AG是CAB的平分线,CAB=50,CAD=25;在ADC中,C=90,CAD=25,ADC=65(直角三角形中的两个锐角互余);故答案是:6517、12【解析】
20、设AD=a,则AB=OC=2a,根据点D在反比例函数y=的图象上,可得D点的坐标为(a,),所以OA=;过点E 作ENOC于点N,交AB于点M,则OA=MN=,已知OEC的面积为12,OC=2a,根据三角形的面积公式求得EN=,即可求得EM=;设ON=x,则NC=BM=2a-x,证明BMEONE,根据相似三角形的性质求得x=,即可得点E的坐标为(,),根据点E在在反比例函数y=的图象上,可得=k,解方程求得k值即可.【详解】设AD=a,则AB=OC=2a,点D在反比例函数y=的图象上,D(a,),OA=,过点E 作ENOC于点N,交AB于点M,则OA=MN=,OEC的面积为12,OC=2a,E
21、N=,EM=MN-EN=-=;设ON=x,则NC=BM=2a-x,ABOC,BMEONE,,即,解得x=,E(,),点E在在反比例函数y=的图象上,=k,解得k=,k0,k=12.故答案为:12.【点睛】本题是反比例函数与几何的综合题,求得点E的坐标为(,)是解决问题的关键.18、(x1)1【解析】试题分析:直接用完全平方公式分解即可,即x14x+4=(x1)1考点:分解因式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2)规则是公平的;【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计
22、算出小王和小李去植树的概率即可知道规则是否公平试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=;(2)不公平,理由如下:P(小王)=,P(小李)=,规则不公平点睛:本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比20、,当x1时,原式1【解析】先化简分式,然后将x的值代入计算即可【详解】解:原式 . 且, x的整数有,取,当时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键21、(1)证明见解析;(2)tanC
23、BG=【解析】(1)连接OD,CD,根据圆周角定理得BDC=90,由等腰三角形三线合一的性质得D为AB的中点,所以OD是中位线,由三角形中位线性质得:ODAC,根据切线的性质可得结论;(2)如图,连接BG,先证明EFBG,则CBG=E,求CBG的正切即可【详解】解:(1)证明:连接OD,CD,BC是O的直径,BDC=90,CDAB,AC=BC,AD=BD,OB=OC,OD是ABC的中位线ODAC,DF为O的切线,ODDF,DFAC;(2)解:如图,连接BG,BC是O的直径,BGC=90,EFC=90=BGC,EFBG,CBG=E,RtBDC中,BD=3,BC=5,CD=4,SABC=,即64=
24、5BG,BG=,由勾股定理得:CG=,tanCBG=tanE=.【点睛】本题考查了切线的性质、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角的正切进行转移是基本思路,利用面积法求BG的长是解决本题的难点22、(1)四边形ACBD是菱形;理由见解析;(2)证明见解析.【解析】(1)根据题意得出,即可得出结论;(2)先证明四边形是平行四边形,再由菱形的性质得出,证明四边形是矩形,得出对角线相等,即可得出结论.【详解】(1)解:四边形ACBD是菱形;理由如下:根据题意得:AC=BC=BD=AD,四边形ACBD是菱形(四条边相等的四边形是菱形);(2)证明:DEAB,BECD,四边形B
25、EDM是平行四边形,四边形ACBD是菱形,ABCD,BMD=90,四边形ACBD是矩形,ME=BD,AD=BD,ME=AD【点睛】本题考查了菱形的判定、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的判定和矩形的判定与性质,并能进行推理结论是解决问题的关键.23、(1),;(2)【解析】(1)当y=0,则x2-4x-5=0,解方程即可得到x的值.(2) 由题意易求M,P点坐标,再求出MP的直线方程,可得cotMCB.【详解】(1)把代入函数解析式得,即,解得:,. (2)把代入得,即得,二次函数,与轴的交点为,点坐标为. 设直线的解析式为,代入,得解得, 点坐标为, 在中,又.【点睛】本题考
26、查的知识点是抛物线与x轴的交点,二次函数的性质,解题的关键是熟练的掌握抛物线与x轴的交点,二次函数的性质.24、【解析】将3,再联立消未知数即可计算.【详解】解:得: +得: 把代入得方程组的解为【点睛】本题考查二元一次方程组解法,关键是掌握消元法.25、旗杆AB的高度为6.4米.【解析】分析:(1)根据坡度i与坡角之间的关系为:i=tan进行计算;(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可本题解析:(1)斜坡BC的坡度i=1:,tanBCD= ,BCD=30;(2)在RtBCD中,CD=BCcosBCD=6=9,则DF=DC+CF=10(米),四边形GDFE为矩形,
27、GE=DF=10(米),AEG=45,AG=DE=10(米),在RtBEG中,BG=GEtanBEG=100.36=3.6(米),则AB=AGBG=103.6=6.4(米).答:旗杆AB的高度为6.4米。26、【解析】根据分式的运算法则即可求出答案【详解】原式,当时,原式 【点睛】本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.27、(1)见解析;(2)见解析.【解析】(1)先判定,可得,再根据是的中线,即可得到,依据,即可得出四边形是平行四边形;(2)先判定,即可得到,依据,可得根据是的中线,可得,进而得出四边形是矩形.【详解】证明:(1)是的中点,又,又是的中线,又,四边形是平行四边形;(2),即,又,又是的中线,又四边形是平行四边形,四边形是矩形.【点睛】本题主要考查了平行四边形、矩形的判定,等腰三角形的性质以及相似三角形的性质的运用,解题时注意:对角线相等的平行四边形是矩形.