《2022-2023学年山西省(运城地区)达标名校十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山西省(运城地区)达标名校十校联考最后数学试题含解析.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1的绝对值是()ABCD2如图,直线AB与直线CD相交于点O,E是COB内一点,且OEAB,AOC=35,则EOD的度数是( )A155B145C135D1253定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次
2、函数y=ax2+bx称为函数y=的一个“派生函数”例如:点(2, )在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是()A命题(1)与命题(2)都是真命题B命题(1)与命题(2)都是假命题C命题(1)是假命题,命题(2)是真命题D命题(1)是真命题,命题(2)是假命题4已知点A(0,4),B(8,0)和C(a,a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()ABCD25如图,在ABC中,AC=BC,点D
3、在BC的延长线上,AEBD,点ED在AC同侧,若CAE=118,则B的大小为()A31B32C59D626下列说法:四边相等的四边形一定是菱形顺次连接矩形各边中点形成的四边形一定是正方形对角线相等的四边形一定是矩形经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有个A4B3C2D17一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A6 B4 C8 D48|的倒数是( )A2BCD29用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用张铝片制作瓶身,则可列方
4、程( )ABCD10下列计算正确的是()A(8)8=0B3+=3C(3b)2=9b2Da6a2=a3二、填空题(本大题共6个小题,每小题3分,共18分)11有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是_12因式分解:_13计算的结果是_.14如图,已知在ABC中,A=40,剪去A后成四边形,1+2=_.15有一组数据:3,5,5,6,7,这组数据的众数为_16已知二次函数yax2bxc(a0)中,函数值y与自变量x的部分对应值如下表:x54321y32565则关于x的一元二次方程ax2bxc2的根是_三、解答题(共8题,共7
5、2分)17(8分)一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?18(8分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A7250.01Bmn0.01设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB(1)如图是yB与x之间函数关系的图象,请根据图象填空:m ;n ;(2)写出yA与x之间的函数关系式;(3)选择哪种方式上网学习合算,
6、为什么19(8分)某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路甲勘测员在A处测得点O位于北偏东45,乙勘测员在B处测得点O位于南偏西73.7,测得AC=840m,BC=500m请求出点O到BC的距离参考数据:sin73.7,cos73.7,tan73.720(8分)抛一枚质地均匀六面分别刻有1、2、3、4、5、6点的正方体骰子两次,若记第一次出现的点数为a,第二次出现的点数为b,则以方程组的解为坐标的点在第四象限的概率为_21(8分)如图,已知点C是以AB为直径的O上一点,CHAB于点H,过点B作O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,
7、直线CF交AB的延长线于G(1)求证:AEFD=AFEC;(2)求证:FC=FB;(3)若FB=FE=2,求O的半径r的长22(10分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶已知BC=80千米,A=45,B=30开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:1.41,1.73)23(12分)关于x的一元二次方程有两个实数根,则m的取值范围是()Am1Bm1C3m1D
8、3m124如图,已知点E,F分别是ABCD的对角线BD所在直线上的两点,BF=DE,连接AE,CF,求证:CF=AE,CFAE参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据负数的绝对值是它的相反数,可得答案【详解】-=,A错误;-=,B错误;=,D错误;=,故选C.【点睛】本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.2、D【解析】解: EOAB, 故选D.3、C【解析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结
9、论(1)P(a,b)在y=上, a和b同号,所以对称轴在y轴左侧,存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题(2)函数y=的所有“派生函数”为y=ax2+bx, x=0时,y=0,所有“派生函数”为y=ax2+bx经过原点,函数y=的所有“派生函数”,的图象都进过同一点,是真命题考点:(1)命题与定理;(2)新定义型4、B【解析】首先求得AB的中点D的坐标,然后求得经过点D且垂直于直线y=-x的直线的解析式,然后求得与y=-x的交点坐标,再求得交点与D之间的距离即可【详解】AB的中点D的坐标是(4,-2),C(a,-a)在一次函数y=-x上,设过D且与直线y=-x垂直的
10、直线的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,则函数解析式是y=x-1根据题意得:,解得:,则交点的坐标是(3,-3)则这个圆的半径的最小值是:=故选:B【点睛】本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C(a,-a),一定在直线y=-x上,是关键5、A【解析】根据等腰三角形的性质得出BCAB,再利用平行线的性质解答即可【详解】在ABC中,ACBC,BCAB,AEBD,CAE118,BCABCAE180,即2B180118,解得:B31,故选A【点睛】此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出BCAB6、C【解析】四边
11、相等的四边形一定是菱形,正确;顺次连接矩形各边中点形成的四边形一定是菱形,错误;对角线相等的平行四边形才是矩形,错误;经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,正确;其中正确的有2个,故选C考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定7、A【解析】根据题意,可判断出该几何体为圆柱且已知底面半径以及高,易求表面积解答:解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=22+112=6,故选A8、D【解析】根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案【详解】|=,的倒数是
12、2;|的倒数是2,故选D【点睛】本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键9、C【解析】设用张铝片制作瓶身,则用张铝片制作瓶底,可作瓶身16x个,瓶底个,再根据一个瓶身和两个瓶底可配成一套,即可列出方程.【详解】设用张铝片制作瓶身,则用张铝片制作瓶底,依题意可列方程故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.10、C【解析】选项A,原式=-16;选项B,不能够合并;选项C,原式=;选项D,原式=.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】列举出所有情况,看两个骰子向上的一面的点数和小于6的情况占总情况的多少即
13、可【详解】解:列表得:两个骰子向上的一面的点数和小于6的有10种,则其和小于6的概率是,故答案为:【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件树状图法适用于两步或两步以上完成的事件解题时还要注意是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比12、x3(y+1)(y-1)【解析】先提取公因式x3,再利用平方差公式分解可得【详解】解:原式=x3(y2-1)=x3(y+1)(y-1),故答案为x3(y+1)(y-1)【点睛】本题主要考查提公因式法与公式法的综合运用,解题的关键是熟练掌握一般整式的因式分解的步骤-先提取公因式
14、,再利用公式法分解13、【解析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并【详解】.【点睛】考点:二次根式的加减法14、220.【解析】试题分析:ABC中,A40,=;如图,剪去A后成四边形12+=;12220考点:内角和定理点评:本题考查三角形、四边形的内角和定理,掌握内角和定理是解本题的关键15、1【解析】根据众数的概念进行求解即可得.【详解】在数据3,1,1,6,7中1出现次数最多,所以这组数据的众数为1,故答案为:1【点睛】本题考查了众数的概念,熟知一组数据中出现次数最多的数据叫做众数是解题的关键16、x1=-4,x1=2【解析】解:x=3,x=1的函数
15、值都是5,相等,二次函数的对称轴为直线x=1x=4时,y=1,x=2时,y=1,方程ax1+bx+c=3的解是x1=4,x1=2故答案为x1=4,x1=2点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键三、解答题(共8题,共72分)17、1千米/时【解析】设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20x)千米/时,根据由货轮往返两个码头之间,可知顺水航行的距离与逆水航行的距离相等列出方程,解方程即可求解.【详解】设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20x)千米/时,根
16、据题意得:6(20x)=1(20+x),解得:x=1答:水流的速度是1千米/时【点睛】本题考查了一元一次方程的应用,读懂题意,找出等量关系,设出未知数后列出方程是解决此类题目的基本思路.18、(1)10,50;(2)见解析;(3)当0x30时,选择A方式上网学习合算,当x=30时,选择哪种方式上网学习都行,当x30时,选择B方式上网学习合算【解析】(1)由图象知:m=10,n=50;(2)根据已知条件即可求得yA与x之间的函数关系式为:当x25时,yA=7;当x25时,yA=7+(x25)0.01;(3)先求出yB与x之间函数关系为:当x50时,yB=10;当x50时,yB=10+(x50)6
17、00.01=0.6x20;然后分段求出哪种方式上网学习合算即可【详解】解:(1)由图象知:m=10,n=50;故答案为:10;50;(2)yA与x之间的函数关系式为:当x25时,yA=7,当x25时,yA=7+(x25)600.01,yA=0.6x8,yA=;(3)yB与x之间函数关系为:当x50时,yB=10,当x50时,yB=10+(x50)600.01=0.6x20,当0x25时,yA=7,yB=50,yAyB,选择A方式上网学习合算,当25x50时yA=yB,即0.6x8=10,解得;x=30,当25x30时,yAyB,选择A方式上网学习合算,当x=30时,yA=yB,选择哪种方式上网
18、学习都行,当30x50,yAyB,选择B方式上网学习合算,当x50时,yA=0.6x8,yB=0.6x20,yAyB,选择B方式上网学习合算,综上所述:当0x30时,yAyB,选择A方式上网学习合算,当x=30时,yA=yB,选择哪种方式上网学习都行,当x30时,yAyB,选择B方式上网学习合算【点睛】本题考查一次函数的应用19、点O到BC的距离为480m【解析】作OMBC于M,ONAC于N,设OM=x,根据矩形的性质用x表示出OM、MC,根据正切的定义用x表示出BM,根据题意列式计算即可【详解】作OMBC于M,ONAC于N,则四边形ONCM为矩形,ON=MC,OM=NC,设OM=x,则NC=
19、x,AN=840x,在RtANO中,OAN=45,ON=AN=840x,则MC=ON=840x,在RtBOM中,BM=x,由题意得,840x+x=500,解得,x=480,答:点O到BC的距离为480m【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键20、 【解析】解方程组,根据条件确定a、b的范围,从而确定满足该条件的结果个数,利用古典概率的概率公式求出方程组只有一个解的概率.【详解】,得 若b2a, 即a=2,3,4,5,6 b=4,5,6符合条件的数组有(2,5)(2,6)共有2个,若b2a, 符合条件的数组有(1,1)共有1个,概率p=.故答案
20、为:.【点睛】本题主要考查了古典概率及其概率计算公式的应用.21、(1)详见解析;(2)详见解析;(3)2.【解析】(1)由BD是O的切线得出DBA=90,推出CHBD,证AECAFD,得出比例式即可(2)证AECAFD,AHEABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF即可(3)求出EF=FC,求出G=FAG,推出AF=FG,求出AB=BG,连接OC,BC,求出FCB=CAB推出CG是O切线,由切割线定理(或AGCCGB)得出(2+FG)2=BGAG=2BG2,在RtBFG中,由勾股定理得出BG2=FG2BF2,推出FG24FG12=0,求出FG即可,从而由勾股定
21、理求得AB=BG的长,从而得到O的半径r22、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米【解析】(1)过点C作AB的垂线CD,垂足为D,在直角ACD中,解直角三角形求出CD,进而解答即可;(2)在直角CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程【详解】解:(1)过点C作AB的垂线CD,垂足为D,ABCD,sin30=,BC=80千米,CD=BCsin30=80(千米),AC=(千米),AC+BC=80+40401.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走
22、136.4千米;(2)cos30=,BC=80(千米),BD=BCcos30=80(千米),tan45=,CD=40(千米),AD=(千米),AB=AD+BD=40+4040+401.73=109.2(千米),汽车从A地到B地比原来少走多少路程为:AC+BCAB=136.4109.2=27.2(千米)答:汽车从A地到B地比原来少走的路程为27.2千米【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线23、C【解析】利用二次根式有意义的条件和判别式的意义得到,然后解不等式组即可【详解】根据题意得,解得-3m1故选C【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根24、证明见解析【解析】根据平行四边形性质推出ABCD,ABCD,得出EBAFDC,根据SAS证两三角形全等即可解决问题.【详解】解:四边形ABCD是平行四边形,AB=CD,ABCD,EBA=FDC,DE=BF,BE=DF,在ABE和CDF中,ABECDF(SAS),AE=CF,E=F,AECF【点睛】本题考查了平行四边形的性质和全等三角形的判定的应用,解题的关键是准确寻找全等三角形解决问题