《2022-2023学年甘肃省张掖市达标名校十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年甘肃省张掖市达标名校十校联考最后数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1一次函数与反比例函数在同一个坐标系中的图象可能是()ABCD2若a与3互为倒数,则a=()A3B3CD-3已知二次函数y=x2 + bx +c 的图象与x轴相交于A、B两点,其顶点为P,若SAPB=1,则b与c满足的关系是( )Ab2 -4c +
2、1=0Bb2 -4c -1=0Cb2 -4c +4 =0Db2 -4c -4=04小带和小路两个人开车从A城出发匀速行驶至B城在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示有下列结论;A,B两城相距300 km;小路的车比小带的车晚出发1 h,却早到1 h;小路的车出发后2.5 h追上小带的车;当小带和小路的车相距50 km时,t或t.其中正确的结论有()ABCD5若一个正比例函数的图象经过A(3,6),B(m,4)两点,则m的值为( )A2B8C2D86九章算术是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金
3、十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )ABCD7从3、1、2这三个数中任取两个不同的数作为P点的坐标,则P点刚好落在第四象限的概率是( )ABCD8在-,0,2这四个数中,最小的数是( )ABC0D29将抛物线绕着点(0,3)旋转180以后,所得图象的解析式是( )ABCD10如图,已知ADE是ABC绕点A逆时针旋转所得,其中点D在射线AC上,设旋转角为,直线BC与直线DE交于点F,那么下列结论不
4、正确的是()ABACBDAECCFDDFDC二、填空题(本大题共6个小题,每小题3分,共18分)11如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是_ 12同时掷两粒骰子,都是六点向上的概率是_13圆锥的底面半径为4cm,高为5cm,则它的表面积为_ cm114若xay与3x2yb是同类项,则ab的值为_15化简二次根式的正确结果是_16若一个多边形的每一个外角都等于40,则这个多边形的边数是 三、解答题(共8题,共72分)17(8分)如图,ABC,CDE均是等腰直角三角形,ACB=DCE=90,点E在AB上,求证:CDACEB18(8分)RtABC中,ABC=90,以A
5、B为直径作O交AC边于点D,E是边BC的中点,连接DE,OD(1)如图,求ODE的大小;(2)如图,连接OC交DE于点F,若OF=CF,求A的大小19(8分) 如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BFEF,将线段EF绕点F顺时针旋转90得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG求证:BE2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明20(8分)先化简,再求值:1,其中a=2sin60tan45,b=121(8分)如图,已知:,求证:22(10分)计算:解不等式组,并写出它的所有整数解23(12分)2018年“清明节
6、”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多元(1)第一批花每束的进价是多少元(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?24某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元152025y/件252015已知日销售量y是销售价x的一次函数求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元
7、?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】当k0时,一次函数y=kxk的图象过一、三、四象限,反比例函数y=的图象在一、三象限,A、C不符合题意,B符合题意;当k0时,一次函数y=kxk的图象过一、二、四象限,反比例函数y=的图象在二、四象限,D不符合题意故选B2、D【解析】试题分析:根据乘积是1的两个数互为倒数,可得3a=1,a=,故选C.考点:倒数3、D【解析】抛物线的顶点坐标为P(,),设A 、B两点的坐标为A(,0)、B(,0)则AB,根据根与系数的关系把AB的长度用b、c表示,而SAPB1,然后根据三角形的面积公式就可以建立关于b、c的等式【详解】解:,A
8、B,若SAPB1SAPBAB 1, ,设s,则,故s2,2,故选D【点睛】本题主要考查了抛物线与x轴的交点情况与判别式的关系、抛物线顶点坐标公式、三角形的面积公式等知识,综合性比较强4、C【解析】观察图象可判断,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断,再令两函数解析式的差为50,可求得t,可判断,可得出答案【详解】由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,都正确;设小带车离开A城的距离y与t的关系式为y小带kt,把(5,300)代入可求得
9、k60,y小带60t,设小路车离开A城的距离y与t的关系式为y小路mtn,把(1,0)和(4,300)代入可得解得y小路100t100,令y小带y小路,可得60t100t100,解得t2.5,即小带和小路两直线的交点横坐标为t2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,不正确;令|y小带y小路|50,可得|60t100t100|50,即|10040t|50,当10040t50时,可解得t,当10040t50时,可解得t,又当t时,y小带50,此时小路还没出发,当t时,小路到达B城,y小带250.综上可知当t的值为或或或时,两车相距50 km,不正确故选C.【点睛】本
10、题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间5、A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,6)代入可得:3k=6,解得:k=2,函数解析式为:y=2x,将B(m,4)代入可得:2m=4,解得m=2,故选A考点:一次函数图象上点的坐标特征6、D【解析】由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案【详解】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值
11、金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,所以方程组错误,故选:D【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质7、B【解析】解:画树状图得:共有6种等可能的结果,其中(1,2),(3,2)点落在第四项象限,P点刚好落在第四象限的概率=故选B点睛:本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键8、D【解析】根据正数大于0,负数小于0,正数大于一切负数,两
12、个负数,绝对值大的反而小比较即可.【详解】在,0,1这四个数中,10,故最小的数为:1故选D【点睛】本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.9、D【解析】将抛物线绕着点(0,3)旋转180以后,a的值变为原来的相反数,根据中心对称的性质求出旋转后的顶点坐标即可得到旋转180以后所得图象的解析式.【详解】由题意得,a=-.设旋转180以后的顶点为(x,y),则x=20-(-2)=2,y=23-5=1,旋转180以后的顶点为(2,1),旋转180以后所得图象的解析式为:.故选D.【点睛】本题考查了二次函数图象的旋转变换,在绕抛物线某点旋转18
13、0以后,二次函数的开口大小没有变化,方向相反;设旋转前的的顶点为(x,y),旋转中心为(a,b),由中心对称的性质可知新顶点坐标为(2a-x,2b-y),从而可求出旋转后的函数解析式.10、D【解析】利用旋转不变性即可解决问题【详解】DAE是由BAC旋转得到,BAC=DAE=,B=D,ACB=DCF,CFD=BAC=,故A,B,C正确,故选D【点睛】本题考查旋转的性质,解题的关键是熟练掌握旋转不变性解决问题,属于中考常考题型二、填空题(本大题共6个小题,每小题3分,共18分)11、10.5【解析】先证AEBABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BEAC,DCACBE/DC
14、,AEBADC,即:,CD10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.12、【解析】同时掷两粒骰子,一共有66=36种等可能情况,都是六点向上只有一种情况,按概率公式计算即可.【详解】解:都是六点向上的概率是.【点睛】本题考查了概率公式的应用.13、【解析】利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=底面半径的平方+底面周长母线长1.【详解】底面半径为4cm,则底面周长=8cm,底面面积=16cm1;由勾股定理得,母线长=,圆锥的侧面面积,它的表面积=(16+4 )cm1= cm1 ,故答案为:.【点睛】
15、本题考查了有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(1)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.14、2【解析】试题解析:xay与3x2yb是同类项,a=2,b=1,则ab=2.15、a【解析】 , . .16、9【解析】解:36040=9,即这个多边形的边数是9三、解答题(共8题,共72分)17、见解析.【解析】试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可试题解析:证明:ABC、CDE均为等腰直角三角形,ACB=DCE=9
16、0,CE=CD,BC=AC,ACBACE=DCEACE,ECB=DCA,在CDA与CEB中,CDACEB考点:全等三角形的判定;等腰直角三角形18、(1)ODE=90;(2)A=45.【解析】分析:()连接OE,BD,利用全等三角形的判定和性质解答即可; ()利用中位线的判定和定理解答即可详解:()连接OE,BD AB是O的直径,ADB=90,CDB=90 E点是BC的中点,DE=BC=BE OD=OB,OE=OE,ODEOBE,ODE=OBE ABC=90,ODE=90; ()CF=OF,CE=EB,FE是COB的中位线,FEOB,AOD=ODE,由()得ODE=90,AOD=90 OA=O
17、D,A=ADO=点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答19、(1)见解析;(2)四边形BFGN是菱形,理由见解析.【解析】(1)过F作FHBE于点H,可证明四边形BCFH为矩形,可得到BHCF,且H为BE中点,可得BE2CF;(2)由条件可证明ABNHFE,可得BNEF,可得到BNGF,且BNFG,可证得四边形BFGN为菱形【详解】(1)证明:过F作FHBE于H点,在四边形BHFC中,BHFCBHBCF90,所以四边形BHFC为矩形,CFBH,BFEF,FHBE,H为BE中点,BE2BH,BE2CF;(2)四边形BFGN是菱形证明:将线
18、段EF绕点F顺时针旋转90得FG,EFGF,GFE90,EFHBFHGFB90BNFG,NBFGFB180,NBAABCCBFGFB180,ABC90,NBACBFGFB1809090,由BHFC是矩形可得BCHF,BFHCBF,EFH90GFBBFH90GFBCBFNBA,由BHFC是矩形可得HFBC,BCAB,HFAB,在ABN和HFE中,ABNHFE,NBEF,EFGF,NBGF,又NBGF,NBFG是平行四边形,EFBF,NBBF,平行四边NBFG是菱形点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键在(2)中证得AB
19、NHFE是解题的关键20、【解析】对待求式的分子、分母进行因式分解,并将除法化为乘法可得-1,通过约分即可得到化简结果;先利用特殊角的三角函数值求出a的值,再将a、b的值代入化简结果中计算即可解答本题.【详解】原式=-1=-1=,当a2sin60tan45=21=1,b=1时,原式=.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简求值运算法则.21、证明见解析;【解析】根据HL定理证明RtABCRtDEF,根据全等三角形的性质证明即可【详解】,BE为公共线段,CE+BE=BF+BE,即 又,在与中, AC=DF.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判
20、定定理和性质定理是解题的关键22、(1);(1)0,1,1.【解析】(1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果(1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可【详解】解:(1)原式11 ,7(1) ,解不等式得:x1,解不等式得:x1,不等式组的解集是:1x1故不等式组的整数解是:0,1,1【点睛】此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键23、(1)2元;(2)第二批花的售价至少为元;【解析】(1)设第一批花每束的进价是x元,则第
21、二批花每束的进价是(x+0.5)元,根据数量=总价单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m元,根据利润=每束花的利润数量结合总利润不低于1500元,即可得出关于m的一元一次不等式,解之即可得出结论【详解】(1)设第一批花每束的进价是x元,则第二批花每束的进价是元,根据题意得:,解得:,经检验:是原方程的解,且符合题意答:第一批花每束的进价是2元(2)由可知第二批菊花的进价为元设第二批菊花的售价为m元,根据题意得:,解得:答:第二批花的售价至少为元【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式24、();()此时每天利润为元【解析】试题分析:(1) 根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.试题解析:()设,将,和,代入,得:,解得:,;()将代入()中函数表达式得:,利润(元),答:此时每天利润为元